|

楼主 |
发表于 2020-12-7 00:02
|
显示全部楼层
解:记\(\,a=8+3\sqrt{21},\;b=8-3\sqrt{21},\;c=\sqrt[3]{a}+\sqrt[3]{b},\;\,\)则\(\,ab=(-5)^3,\)
\(\qquad\,c^3=a+b+3(\sqrt[3]{a(ab)}+\sqrt[3]{b(ab)})=16-15c.\;\;\)可见\(\,c\,\)是方程
\(\qquad z^3+15z-16=(z-1)(z^2+z+16)=0\,\)的唯一实根.
\(\therefore\quad\boxed{\sqrt[3]{8+3\sqrt{21}}+\sqrt[3]{8-3\sqrt{21}}=1}\) |
|