|
本帖最后由 elim 于 2020-12-8 18:04 编辑
题:试证\(\;\;\displaystyle\lim_{x\to 0}\small\frac{1-\cos x\cos 2x\cdots\cos nx}{x^2}=\frac{n(n+1)(2n+1)}{12}\)
证:记所论极限为\(\,L_n,\; P_0(x)=1,\,P_n(x)=P_{n-1}(x)\cos nx,\,\)则
\(\qquad L_0=0,\; P_{k}\sim 1,\;\;\therefore\;L_n=\displaystyle\lim_{x\to 0}{\small\frac{1-P_{n-1}(x)(1-(1-\cos nx))}{x^2}}\)
\(\qquad=L_{n-1}+\displaystyle\lim_{x\to 0}{\small P_{n-1}(x)\frac{1-\cos nx}{x^2}}=L_{n-1}+{\small\frac{1}{2}}n^2=\small\frac{1}{2}\sum_{k=1}^n k^2\)
\(\therefore\quad\boxed{\lim_{x\to 0}\small\frac{1-\cos x\cos 2x\cdots\cos nx}{x^2}=\frac{n(n+1)(2n+1)}{12}}\)
这个结果很神奇,很漂亮. |
|