|
本帖最后由 永远 于 2022-11-21 11:22 编辑
你看还要需要大量的基础知识做后盾,没有相关理论基础到后面直接没有然后了,我想了下,当初用代换就是个错,e老师基础理论好,请老师你继续研究
\[\begin{gathered}
\int_0^1 {\frac{{\ln ( - \ln x)\ln (1 - x)}}{x}} dx = \int_0^1 {\ln ( - \ln x)\ln (1 - x)} d(\ln x) \hfill \\
\quad \quad \quad \quad \,\;\;\,\;\,\underline{\underline {( 令:- \ln x = t)}} \int_0^\infty {\ln t\ln (1 - {e^{ - t}})} dt \hfill \\
\quad \quad \quad \quad \quad \quad \quad \quad \quad \, = \int_0^\infty {\ln x\ln (1 - {e^{ - x}})} dx \hfill \\
\quad \quad \quad \quad \quad \quad \quad \quad \quad \, = - \int_0^\infty {\ln x} \sum\limits_{n = 1}^\infty {\frac{{{e^{ - nx}}}}{n}} dx \hfill \\
\quad \quad \quad \quad \quad \quad \quad \quad \quad \, = - \int_0^\infty {\sum\limits_{n = 1}^\infty {\frac{{{e^{ - nx}}}}{n}\ln x} dx} \hfill \\
\quad \quad \quad \quad \quad \quad \quad \quad \quad \,\, = - \mathop {\lim }\limits_{\lambda \to {0^ + }} \int_\lambda ^\infty {\sum\limits_{n = 1}^\infty {\frac{{{e^{ - nx}}}}{n}\ln x} dx} \hfill \\
\quad \quad \quad \quad \quad \quad \quad \quad \quad \,\, = - \mathop {\lim }\limits_{\lambda \to {0^ + }} \sum\limits_{n = 1}^\infty {\int_\lambda ^\infty {\frac{{{e^{ - nx}}}}{n}\ln xdx} } \hfill \\
\end{gathered} \] |
|