|

楼主 |
发表于 2020-12-27 22:44
|
显示全部楼层
\(\displaystyle\prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^n}\right)^{x^n}=\lim_{N\to\infty} \frac12\cdot\prod_{j=1}^N(1+x^j)^{(x^{j-1}-x^j)}\cdot (1+x^{N+1})^{x^N}\).
令 \(F(x,N)=\displaystyle\prod_{j=1}^N(1+x^j)^{(x^{j-1}-x^j)}\cdot (1+x^{N+1})^{x^N}\), 则
\(\displaystyle\ln F(x,N)=\sum_{j=1}^N(x^{j-1}-x^j)\ln(1+x^j)+x^N\ln(1+x^{N+1})\)
对\(\,x\in(0,1),\;\ln F(x,N)\overset{N\to\infty}{\to}\displaystyle\int_0^1\ln(1+x)dx+o(1-x)\)
\(=2\ln 2-1+o(1-x)\).
\(\therefore\;\;\displaystyle\lim_{x\to 1^-}{\small\frac{1}{2}}\lim_{N\to\infty}F(x,N)={\small\frac{1}{2}}2^2\lim_{x\to 1^-}e^{-1+o(1-x)}=\small\frac{2}{e}\)
注记:这里用到了连续函数黎曼积分的性质。
|
|