|

楼主 |
发表于 2021-3-21 20:50
|
显示全部楼层
本帖最后由 永远 于 2021-4-9 20:58 编辑
转载e的贴子:
题:估计椭圆周长\(P \approx \pi (\frac{3}{2}(a + b) - \sqrt {ab} )\)的精度.
解:已知椭圆周长\(P=\pi(a+b)\,_2\hspace{-1px}F_1(\frac{-1}{2},\frac{-1}{2};1;h^2)\)
\({\small=}\pi\small(a+b)\displaystyle\sum_{n=0}^{\infty}\frac{(\frac{-1}{2})_n(\frac{-1}{2})_n}{(1)_n}\frac{(h^2)^n}{n!}\;\color{gray}{(h={\scriptsize\frac{a-b}{a+b}},\,(\lambda)_n=\prod_{k=0}^n(\lambda+k))}\)
\({\small=}\pi{\small(a+b)}\big(\small{\scriptsize 1+\big(\dfrac{1}{2}\big)^2}h^2 {\scriptsize+\big(\dfrac{1}{2\cdot 4}\big)^2}h^4{\scriptsize+\big(\dfrac{1\cdot 3}{2\cdot 4\cdot 6}\big)^2}h^6{\scriptsize+\big(\dfrac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6\cdot 8}\big)^2}h^8{\scriptsize+}{\tiny\cdots}\big)\)
\(\because\;\frac{2\sqrt{ab}}{(a+b)}\small=\sqrt{1-h^2}=1-\frac{1}{2}h^2-\frac{1}{2^3}h^4-\frac{1}{2^3}h^6+\cdots,\)
\(\therefore\;\pi\big(\frac{3}{2}(a+b)-\sqrt{ab}\big)=\pi(a+b)(\frac{3}{2}-\frac{\sqrt{1-h^2}}{2})\)
\(\therefore\;|{\small\pi}(\frac{3}{2}{\small-}\sqrt{\small ab}){\small-\scriptsize P}|\sim\frac{3}{2^{\hspace{1px}6}}h^4.\quad\small\square\) |
|