|
王守恩 发表于 2021-5-19 07:45
利用三角函数解题。
\(记BC=1,AB=\sin(\theta),AC=\cos(\theta),AH=\sin(\theta)\cos(\theta),HB=\sin^2(\ ...
接3楼。\(n=2k+1,k=1, 2, 3, 4, ...\)
\(\displaystyle记∠ACB=\theta,BC=1,AO=\frac{1}{2},PQ=\frac{1}{2k+1},OP=OQ=\frac{1}{2(2k+1)}\)
\(\displaystyle(AP)^2=(\frac{1}{2})^2+(\frac{1}{2(2k+1)})^2-2*(\frac{1}{2})*(\frac{1}{2(2k+1)})*\cos(2\theta)\)
\(\displaystyle(AQ)^2=(\frac{1}{2})^2+(\frac{1}{2(2k+1)})^2+2*(\frac{1}{2})*(\frac{1}{2(2k+1)})*\cos(2\theta)\)
\(\displaystyle\cos∠PAQ=\frac{(AP)^2+(AQ)^2-(PQ)^2}{2*(AP)*(AQ)}\)
\(\displaystyle(2k+1)\tan∠PAQ=\frac{(2k+1)\sin∠PAQ}{\cos∠PAQ}=\frac{4k^2+4k+1}{2k^2+2k}\sin(2\theta)\)
\(\displaystyle即:\lim_{k\to\infty}(2k+1)\tan∠PAQ=2\sin(2\theta)\) |
|