数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2675|回复: 2

我把它称为潘承洞教授的最小素数法

[复制链接]
发表于 2021-9-29 05:24 | 显示全部楼层 |阅读模式
我把它称为潘承洞教授的最小素数法
 楼主| 发表于 2021-9-29 05:26 | 显示全部楼层

第一:

想到了数学家刘建亚的《哥德巴赫猜想与潘成洞》:“  我们可以把这个问题反过来思考,

已知奇数N可以表成三个素数之和,

假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,

那么我们也就证明了偶数的哥德巴赫猜想。”

【这是灵感灯塔】

第二:

想到了2013年秘鲁数学家H. A. Helfgott 彻底证明了三元哥德巴赫猜想(Ternary Goldbach Conjecture).

【这是定理工具】

最终:

我给出了的三元哥德巴赫定理的推论:Q=3+q1+q2
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-9-29 05:31 | 显示全部楼层
本帖最后由 cuikun-186 于 2021-9-29 05:44 编辑

三素数定理推论:Q=3+q1+q2

原创作者:崔坤


摘要:

数学家刘建亚的《哥德巴赫猜想与潘成洞》:“  我们可以把这个问题反过来思考,

已知奇数N可以表成三个素数之和,

假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,

那么我们也就证明了偶数的哥德巴赫猜想。”,

直到2013年才有秘鲁数学家哈罗德贺欧夫格特彻底证明了三素数定理。

关键词:三素数定理,奇素数,加法交换律结合律

证明:

根据2013年秘鲁数学家哈罗德·贺欧夫格特已经彻底地证明了的三素数定理:

每个大于等于9的奇数都是三个奇素数之和,每个奇素数都可以重复使用。

它用下列公式表示:

Q是每个≥9的奇数,奇素数:q1≥3,q2≥3,q3≥3,则Q=q1+q2+q3

根据加法交换律结合律,

必有题设:q1≥q2≥q3≥3

Q+3=q1+q2+q3+3

Q+3-q3=3+q1+q2

等式右边只有3+q1+q2,与q3无关

同时,有且仅有q3=3时,等式左边Q+3-q3=Q

则有新的推论:Q=3+q1+q2

左边Q表示每个大于等于9的奇数,右边表示3+2个奇素数的和。

结论:每一个大于或等于9的奇数Q都是3+2个奇素数之和

实际上:

数学家们验证了6至350亿亿的每个偶数都是2个奇素数之和,那么6至350亿亿的每个偶数加3,则有:

9至3500000000000000003的每个奇数都是3+2个奇素数之和,

这验证了三素数定理推论Q=3+q1+q2的正确性。

r2(N)≥1

证明:

根据三素数定理推论Q=3+q1+q2

由此得出:每个大于或等于6的偶数N=Q-3=q1+q2

故“每一个大于或等于6的偶数N都是两个奇素数之和”,即总有r2(N)≥1

例如:任取一个大奇数:309,请证明:306是2个奇素数之和。

证明:根据三素数定理我们有:309=q1+q2+q3

根据加法交换律结合律,必有题设:三素数:q1≥q2≥q3≥3

那么:309+3=3+q1+q2+q3

309+3-q3=3+q1+q2

显然有且仅有q3=3时,309=3+q1+q2

则:306=q1+q2

证毕

参考文献:

[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]
[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-13 00:02 , Processed in 0.080988 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表