|
谢谢高手!慢慢来消化。这个可以有吗?
\(\displaystyle\sum_{n=1}^{\infty}\frac{\sin(n^2)}{n}\)
跟这串数的奇偶有关。\(a(n)=\frac{n^2-\mod(n^2,\ \pi)\ \ }{\pi}=\lfloor\frac{n^2}{\pi}\rfloor\)
{0, 1, 2, 5, 7, 11, 15, 20, 25, 31, 38, 45, 53, 62, 71, 81, 91, 103, 114, 127, 140, 154, 168, 183, 198, ...}
\(a(n)=\mod(\frac{n^2-\mod(n^2,\ \pi)\ \ }{\pi},\ \ 2)=\mod(\lfloor\frac{n^2}{\pi}\rfloor,\ \ 2)\)
{0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,...}
这好像是二进制? |
|