数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2796|回复: 2

求证勾股数必有一边含5因子

[复制链接]
发表于 2022-3-20 13:15 | 显示全部楼层 |阅读模式
在yangchuanju老师的帖子《完美立方体问题》中,发现,关于勾股数必有一边含 5 因子的这一性质也被洛书定理所证明。
这个结论,学生我读了杨老师的文章后才刚刚知道的,这个性质很好!让我们一起来证明吧!
命题:求证勾股数必有一边含5因子?
 楼主| 发表于 2022-3-20 15:48 | 显示全部楼层
求证:勾股数必有一边含5因子?
证明:
本原勾股数公式:
勾股数的三个边为a、b、c,三个边皆为正整数,且两两互质。
a=(u^2-v^2)/2
b=uv
c=(u^2+v^2)/2
其中,u、v为互质的奇数,u>v。
奇数的个位数是,1 3 5 7 9
①当u、v中只要有一个数的个位数是5时,b=uv,b是5的倍数;
②当u、v的个位数是1 3 7 9时,u^2、v^2的个位数有1、9两种情况,u^2、v^2的组合有三种情况:1与1;9与9;1与9。
⑴当1与1时,1+1=2舍去,1-1=0说明(u^2-v^2)是10的倍数,故a是5的倍数;
⑵当9与9时,9+9=18舍去,9-9=0说明(u^2-v^2)是10的倍数,故a是5的倍数;
⑶当1与9时,1+9=10说明(u^2+v^2)是10的倍数,故c是5的倍数。
                                 证毕
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-7 03:50 , Processed in 0.082598 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表