数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 11818|回复: 21

自然数与自然数集合的现实意义

[复制链接]
发表于 2022-4-21 09:23 | 显示全部楼层 |阅读模式
根据恩格斯的“只能从现实来说明[5]”的意见,首先需要知道如下的自然数及其集合的如下的从实践出发的定义。
定义2,空集这个术语,表示没有元素的想象性集合;由确定个数的确定事物为元素组成的整体,而且整体不能作为集合元素的集合,叫做现实的正常集合。其中的术语“元素个数”具有忽略现实集合各个元素性质与大小差别的意义,元素个数多少的表达符号叫做理想自然数(在暂时不联系现实数量的纯粹数学研究中可以简称为自然数)。
这个定义下的现实正常集合需要用一篮子苹果、一家人、一班学生等实例进行说明:其中自然数(即元素个数的表达符号)是古代人创造的由0、1、2、3、4、5、6、7、8、9十个符号与十进记数法表示的数。由此出发,就有了形式逻辑下,需要的背熟自然数的加法、乘法的运算法则。自然数的表达符号及其运算法则就构成了现行的自然数的初步理论。但在自然数应用时,不能忘掉它们与现实数量的关系,例如; 虽然从纯理论上可以讲:理想自然数10比9大,但还需要知道“9个大苹果比十个小苹果分量大、养分多”。使用自然数表达线段长度的毫米数时,需要知道:“线段长度具有测不准性,使用自然数表示两个线段毫米数的和时,需要进行误差分析”。这个自然数概念的修改说明:自然数理论阐述时,需要使用毛泽东著《矛盾论》中说的“对立统一的法则,是唯物辩证法的最根本的法则”、“一切事物中包含的矛盾方面的相互依赖和相互斗争,决定一切事物的生命,推动一切事物的发展。没有什么事物是不包含矛盾的,没有矛盾就没有世界”的论述。也需要使用毛泽东在《实践论》中说的“实践、认识,再实践、再认识,这种形式,循环往复以至无穷,而实践和认识之每一循环都比较地进到了高一级的程度”的论述。
对于现行教科书称N={0,1,2,3,……}为自然数无穷集合的论述,也需要根据实践讨论它的来源于有穷集合的本质及其性质。首先,根据自然数的十进计数法可以提出如下的三个以有穷集合为项的无穷序列 :
{0,1},{0,1,2},……,{0,1,2,……,n},……     (1)
或{0,1,2,……,9},{0,1,2,……,19},……,{0,1,2,……,10n-1}, ……(2)
或{0,1},{0,1,2,3,4},……,{0,1,2,……, },……(3)
然后使用广义极限的方法,得到这三个无穷序列的趋向性极限是想象性的元素个数为+∞的无穷集合。由于符号+∞是华东师大《数学分析》上册1980年版80 页中讲的“非正常(或称广义)极限[3]”性质的“非正常实数”。序列(1)中各个集合的元素个数为无穷数列{n+1},序列(2)中各个集合的元素个数为无穷数列{10n},序列(3)中各个集合的元素个数为无穷数列 ,虽然这三元素个数列的广义极限都是+∞,根据菲赫金哥尔茨《微积分学教程》第一卷一分册整序变量的计算不定式,定值法, 与 型不定式定值法计算中都可以使用∞与0的取极限之前变数计算不定式的值。上述三个+∞ 表示的多少是不相同的:(2)式表示的比(1)式表示的元素个数多,(3)式表示的元素个数比(1)(2)式都多。康托尔把无穷集合元素看做定数,提出的无穷基数的做法违背事实;造成了正整数集合1,2,3,……与其平方得到的它的真子集1,4,9,……元素个数相等的做法是错误的,事实上,这两个集合的元素个数分别为: 。使用《微积分学教程》一卷第一分册中,整序变量中的不定式定值法,可以得到两者的比为: 这说明正整数集合1,2,3,……比其真子集1,4,9,……的元素个数多得多;由于对无穷集合一一对应法则进行不到底,不能使用“一一对应法则,得到无穷集合元素个数可以相等”的的集合论,根据上述讨论,应当提出无穷自然数集合如下定义。
定义3:元素个数为有限理想自然数的正常集合叫做有穷自然数集合;若以有穷自然数集合为项的无穷序列的元素个数序列的趋向为包含所有自然数的元素个数为非正常实数+∞的想象性自然数集合,则称:这样的元素个数为非正常实数+∞的含有所有自然数的,不可构造完毕的想象性质的理想性无穷性质的自然数集合;且称N={0,1,2,3,……}为非正常集合。
对于文献[4]叙述了罗素悖伦来看,由于罗素没有提出无穷集合为非正常集合的概念,它的表达式 中的集合x表示的仅仅是他认为的正常集合,所以对文献[4]中说道“所有正常集合组成的集合是不是正常集合”是无法判断的罗素悖伦[4]。现在,根据上述定义3与自然数集合的构造过程就说明:“正常集合有无穷多;以所有正常集合为元素组成的集合是元素个数为+∞的非正常集合”,因此,罗素悖论就不存在了。此外,根据无穷集合不能构造完毕的事实,康托尔无穷基数的术语不能提出,文献[4]中说的“康托尔悖论”也是不存在的。我们不需要为消除这两个悖论去建立ZFC形式语言集合论。此外,由于ZFC形式公理体系中选择公理存在着争论,而且依赖于这个公理的《非标准分析》中提出那种大于N中所有自然数的无穷大自然数,不仅违背了自然数集合N包含了所有自然数的性质,而且它们不能用十进计数法标出,无有使用的必要性。总之,AFC 形式语言公理体系不需要,康托尔的“数学必须肯定实无穷”、“实无穷论者认为:无穷(在数学中表现为无穷集)是一个现实的、完成的、存在着的整体”的观点是违背实践事实的,必须取消的观点。
发表于 2022-4-21 20:51 | 显示全部楼层
本帖最后由 elim 于 2022-4-21 22:07 编辑

思格斯的数学相当于普通中学.jzkyllcjl 的数学空空如也畜生不如.
jzkyllcjl 其实是从他主观唯心的实际出发而已:他连有限集\(\{1,2,\ldots,10^{10000000000}\}\)的元素都枚举不了(更别说完成了!).另外, 在jzkyllcjl 的自然数定义下数学归纳法原理不成立.

巳下是现行数学的自然数集定义:
定义:若集合\(S\)满足\((\varnothing\in S)\wedge(E\in S\implies E 的后继:=E\cup\{E\}\in S)\), 则称\(S\)为归纳集.
无穷公理:归纳集存在.
定义:最小归纳集\(\mathbb{N}:=\bigcap\{S\mid S 是归纳集\}=\{\varnothing,\{\varnothing\},\{\varnothing, \{\varnothing\}\},\ldots\}\)  叫作自然数集.
记\(\varnothing\)为\(0,\,n\)的后继 ,\(n\)的后继为\(n’=n+1\)并由此定义加法,进而乘法和\(p\)进制记数法.
归纳集,无穷公理乃至自然数概念是人类数学朴素的计数乃至数论研穷实践的理论总结的集合论表述.也是数学归纳法的基础.显然自然数集是一个无有穷尽,既存但不是由人逐一构造而成的实无穷.现行数学的自然数概念才是从实际出发并被广为认可的.
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-4-22 08:17 | 显示全部楼层
π与√2、√3的无尽不循环小数展开式都具有永远算不到底的事实,这些展开式的小数点后的位数是无穷多个,关于无穷的概念存在着“实无穷与潜无穷”的两千多年的争论,王宪钧著 数理逻辑引论[M] ]中讲到“实无穷论者认为:无穷(在数学中表现为无穷集)是一个现实的、完成的、存在着的整体,是可以认识的;潜无穷论者否定实无穷,认为无穷并不是已完成的而是就其发展来说是无穷的,无穷只是潜在的[1]。”这个实无穷观点中的“完成的”定语,违背“无穷是无有穷尽、无有终了事实”。所以,康托尔的“数学必须肯定实无穷”的意见不成立,ZFC形式公理中的“无穷集合存在公理”需要改写为“无穷集合是其元素个数趋向于 ,但永远无法构造完毕的想象性非正常集合”。徐利治先生在文献[2]中介绍了布劳维尔(Brouwer)提出的反例。这个反例涉及到无理数的无尽不循环小数的展开式中的① 这些展开式中没有“百零排(即100个连续的0)”;② 这些展开式中有奇数多个“百零排”;③ 这些展开式中有偶数多个“百零排”的三个命题是不是能行的可判断的问题。关于 可判断问题,在黄耀枢《数学基础引论》(北京:北京大学出版社,1987出版,)讲了:定义1.20(能行可判断性)  如果存在一个算法,使得对所给的公式集合中每一个公式的真假,都能在有穷步数内做出答案,那么我们说这集合中的公式是能行可判断的。根据这个定义,上述三个命题都不是能行可判断问题,猅中律失效。文献[1]中也讲到排中律失效的例子。由于无尽不循环小数展开式具有永远算不到底的不可判断的性质,布劳威尔不能使用两次猅中律,提出一个实数Q,与这个实数 是大于、小于或等于0的无法判定实数的三分律反例,虽然徐利治说过“在实无穷意义下,应用两次排中律可以判断这个实数 是大于、小于或等于0的问题”,但“这个问题不是实无穷问题,究竟这个实数 是大于、小于或等于0呢?的问题是一个无法判断的问题”。所以,徐利治先生最后讲到:“看来,这还是一个不易解决的难题”,“希望对布劳维尔(Brouwer)反例感兴趣的读者继续研究下去”。笔者研究后得到的结论是:根据“无穷是无有穷尽、无有终了的事实”,“百零排”的这三种命题都是由于永远算不到底的不可判断的命题,布劳维尔(Brouwer)不能使用两次猅中律,提出他那个实数Q,这样就消除了布劳威尔这个反例。春风晚霞坚持的“数学表述系统中所允许的方法只有演绎推理的方法,……使用两次猅中律得到的三者有且只有一个命题成立的结论”是无效的,事实是:他无法得到三个命题究竟哪一个成立的问题。这说明:数学理论的阐述,不能单靠形式逻辑,也说明:无尽小数永远写不到底的事实必须受到尊重。
回复 支持 反对

使用道具 举报

发表于 2022-4-22 08:52 | 显示全部楼层
本帖最后由 elim 于 2022-4-21 20:54 编辑

畜生不如的jzkyllcjl 具有不住吃狗屎啼猿声的性质.无理数与它的无尽小数表示的的等值及后者是定数这个事实不以人对其的计算无法完成为转移.
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-4-23 17:11 | 显示全部楼层
无限次的并集操作无法完成,自然数集合具有永远写不到底的事实。虽然n的继数n+1任然是自然数,但不能说所有自然数都能被写出。所以 自然数这个归纳集不是正常集合。这个集合应当是元素个数为非正常实数  ∞ 的非正常集合。 只有这样,才可以消除张锦文《集合论与连续统假设浅说》中的 罗素悖论,康托尔悖论与连续统假设的大难题。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-4-23 17:24 | 显示全部楼层
根据恩格斯的“只能从现实来说明[5]”的意见,首先需要知道如下的自然数及其集合的如下的从实践出发的定义。
定义2,空集这个术语,表示没有元素的想象性集合;由确定个数的确定事物为元素组成的整体,而且整体不能作为集合元素的集合,叫做现实的正常集合。其中的术语“元素个数”具有忽略现实集合各个元素性质与大小差别的意义,元素个数多少的表达符号叫做理想自然数(在暂时不联系现实数量的纯粹数学研究中可以简称为自然数)。
这个定义下的现实正常集合需要用一篮子苹果、一家人、一班学生等实例进行说明:其中自然数(即元素个数的表达符号)是古代人创造的由0、1、2、3、4、5、6、7、8、9十个符号与十进记数法表示的数。由此出发,就有了形式逻辑下,需要的背熟自然数的加法、乘法的运算法则。自然数的表达符号及其运算法则就构成了现行的自然数的初步理论。但在自然数应用时,不能忘掉它们与现实数量的关系,例如; 虽然从纯理论上可以讲:理想自然数10比9大,但还需要知道“9个大苹果比十个小苹果分量大、养分多”。使用自然数表达线段长度的毫米数时,需要知道:“线段长度具有测不准性,使用自然数表示两个线段毫米数的和时,需要进行误差分析”。这个自然数概念的修改说明:自然数理论阐述时,需要使用毛泽东著《矛盾论》中说的“对立统一的法则,是唯物辩证法的最根本的法则”、“一切事物中包含的矛盾方面的相互依赖和相互斗争,决定一切事物的生命,推动一切事物的发展。没有什么事物是不包含矛盾的,没有矛盾就没有世界”的论述。也需要使用毛泽东在《实践论》中说的“实践、认识,再实践、再认识,这种形式,循环往复以至无穷,而实践和认识之每一循环都比较地进到了高一级的程度”的论述。
对于现行教科书称N={0,1,2,3,……}为自然数无穷集合的论述,也需要根据实践讨论它的来源于有穷集合的本质及其性质。首先,根据自然数的十进计数法可以提出如下的三个以有穷集合为项的无穷序列 :
{0,1},{0,1,2},……,{0,1,2,……,n},……     (1)
或{0,1,2,……,9},{0,1,2,……,19},……,{0,1,2,……,10n-1}, ……(2)
或{0,1},{0,1,2,3,4},……,{0,1,2,……, },……(3)
然后使用广义极限的方法,得到这三个无穷序列的趋向性极限是想象性的元素个数为+∞的无穷集合。由于符号+∞是华东师大《数学分析》上册1980年版80 页中讲的“非正常(或称广义)极限[3]”性质的“非正常实数”。序列(1)中各个集合的元素个数为无穷数列{n+1},序列(2)中各个集合的元素个数为无穷数列{10n},序列(3)中各个集合的元素个数为无穷数列 ,虽然这三元素个数列的广义极限都是+∞,根据菲赫金哥尔茨《微积分学教程》第一卷一分册整序变量的计算不定式,定值法, 与 型不定式定值法计算中都可以使用∞与0的取极限之前变数计算不定式的值。上述三个+∞ 表示的多少是不相同的:(2)式表示的比(1)式表示的元素个数多,(3)式表示的元素个数比(1)(2)式都多。康托尔把无穷集合元素看做定数,提出的无穷基数的做法违背事实;造成了正整数集合1,2,3,……与其平方得到的它的真子集1,4,9,……元素个数相等的做法是错误的,事实上,这两个集合的元素个数分别为: 。使用《微积分学教程》一卷第一分册中,整序变量中的不定式定值法,可以得到两者的比为: 这说明正整数集合1,2,3,……比其真子集1,4,9,……的元素个数多得多;由于对无穷集合一一对应法则进行不到底,不能使用“一一对应法则,得到无穷集合元素个数可以相等”的的集合论,根据上述讨论,应当提出无穷自然数集合如下定义。
定义3:元素个数为有限理想自然数的正常集合叫做有穷自然数集合;若以有穷自然数集合为项的无穷序列的元素个数序列的趋向为包含所有自然数的元素个数为非正常实数+∞的想象性自然数集合,则称:这样的元素个数为非正常实数+∞的含有所有自然数的,不可构造完毕的想象性质的理想性无穷性质的自然数集合;且称N={0,1,2,3,……}为非正常集合。
对于文献[4]叙述了罗素悖伦来看,由于罗素没有提出无穷集合为非正常集合的概念,它的表达式 中的集合x表示的仅仅是他认为的正常集合,所以对文献[4]中说道“所有正常集合组成的集合是不是正常集合”是无法判断的罗素悖伦[4]。现在,根据上述定义3与自然数集合的构造过程就说明:“正常集合有无穷多;以所有正常集合为元素组成的集合是元素个数为+∞的非正常集合”,因此,罗素悖论就不存在了。此外,根据无穷集合不能构造完毕的事实,康托尔无穷基数的术语不能提出,文献[4]中说的“康托尔悖论”也是不存在的。我们不需要为消除这两个悖论去建立ZFC形式语言集合论。此外,由于ZFC形式公理体系中选择公理存在着争论,而且依赖于这个公理的《非标准分析》中提出那种大于N中所有自然数的无穷大自然数,不仅违背了自然数集合N包含了所有自然数的性质,而且它们不能用十进计数法标出,无有使用的必要性。总之,AFC 形式语言公理体系不需要,康托尔的“数学必须肯定实无穷”、“实无穷论者认为:无穷(在数学中表现为无穷集)是一个现实的、完成的、存在着的整体”的观点是违背实践事实的,必须取消的观点。
回复 支持 反对

使用道具 举报

发表于 2022-5-24 09:50 | 显示全部楼层
现实中没有无穷. jzkyllcjl 没有除法。楼上的长篇谬论失效。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-25 08:27 | 显示全部楼层
elim 发表于 2022-5-24 01:50
现实中没有无穷. jzkyllcjl 没有除法。楼上的长篇谬论失效。

现实中的1被3除的除不尽就是一个无穷的实例,从这个实例可以 看到永远写不到底的 0.3,0.33,0.333,……无穷数列,这个数列是理想实数1/3 的针对误差界数列1/10^n 的全能近似值无穷数列,
回复 支持 反对

使用道具 举报

发表于 2022-5-25 09:01 | 显示全部楼层
现实中除不尽还是有限的实列。你算不到 10^10000000 位。jzkyllcjl 的算法得不到商,所以它四则运算缺除法,畜生不如。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-25 15:11 | 显示全部楼层
elim 发表于 2022-5-25 01:01
现实中除不尽还是有限的实列。你算不到 10^10000000 位。jzkyllcjl 的算法得不到商,所以它四则运算缺除法 ...

第一,elim污蔑恩格斯。恩格斯在《反杜林论》第一编“五、自然哲学、时间和空间”一节的,48页讲到的“杜林先生,永远做不到没有矛盾地思考现实的无限性。无限性是一个矛盾,而且充满着矛盾。无限纯粹是由有限组成的,这已经是矛盾,可是事情就是这样”的话指出了无穷依赖于有穷的唯物辩证法性质,只有这样才能正确阐述无穷集合、无尽小数的理论。
第二,不懂除法的是elim .。事实上,“1被3除具有永远除不尽的事实,这个除法只能逐步得到0.3,0.33,0.333,……无穷数列,这个数列是理想实数 的针对误差界数列 1/10^n的全能近似值无穷数列,这个数列可以简写为0.3333……并称它为无尽循环小数,虽然这个数列与 的差依次是1/30,1/300,1/3000,……,这个差可以无限减小,而趋向于0,但永远达不到0,只能写出全能近似等式1/3~0.333……,而不能写出等式1/3=0.333……   ”。将一元人民币分给三个人,两个人得0.33元,一个人得o.34 元,就可以了,不能做到每个人分得0.3333……元。 与十进小数之间,只有近似相等的关系,而没有绝对准相等关系。对无尽不循环小数 也是如此。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-17 00:33 , Processed in 0.099144 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表