|

楼主 |
发表于 2022-5-28 19:28
|
显示全部楼层
用inf( m )=Sp( m )/(1+μ) 来计算1亿-100亿偶数的素对数量下界:
(这里的μ=0.1502 ,系125亿样本小区域的素对计算值相对误差值进行统计计算得到的相对误差均值μ)
G(100000000) = 291400,inf( 100000000 )≈ 283684.9 , Δ≈-0.026, k(m)= 1.33333
G(100000002) = 464621,inf( 100000002 )≈ 451550.5 , Δ≈-0.028, k(m)= 2.12231
G(100000004) = 247582,inf( 100000004 )≈ 240749.6 , Δ≈-0.028, k(m)= 1.13154
G(100000006) = 218966,inf( 100000006 )≈ 213198.8 , Δ≈-0.026, k(m)= 1.00204
G(100000008) = 437717,inf( 100000008 )≈ 425527.4 , Δ≈-0.028, k(m)= 2
G(100000010) = 323687,inf( 100000010 )≈ 315205.5 , Δ≈-0.026, k(m)= 1.48148
G(100000012) = 263241,inf( 100000012 )≈ 255316.5 , Δ≈-0.03, k(m)= 1.2
G(1000000000) = 2274205,inf( 1000000000 )≈ 2245348.2 , Δ≈-0.013, k(m)= 1.33333
G(1000000002) = 3496205,inf( 1000000002 )≈ 3454562.6 , Δ≈-0.012, k(m)= 2.05139
G(1000000004) = 1747858,inf( 1000000004 )≈ 1727191 , Δ≈-0.012, k(m)= 1.02564
G(1000000006) = 1704301,inf( 1000000006 )≈ 1684011.2 , Δ≈-0.012, k(m)= 1
G(1000000008) = 4151660,inf( 1000000008 )≈ 4104122.7 , Δ≈-0.011, k(m)= 2.43711
G(1000000010) = 2422662,inf( 1000000010 )≈ 2395038.2 , Δ≈-0.011, k(m)= 1.42222
G(1000000012) = 1960129,inf( 1000000012 )≈ 1937861 , Δ≈-0.011, k(m)= 1.15074
G(2000000000) = 4238417,inf( 2000000000 )≈ 4203544.7 , Δ≈-0.0082, k(m)= 1.33333
G(2000000002) = 4897539,inf( 2000000002 )≈ 4855431.3 , Δ≈-0.0086, k(m)= 1.54011
G(2000000004) = 6519934,inf( 2000000004 )≈ 6467330.1 , Δ≈-0.0081, k(m)= 2.05139
G(2000000006) = 3342074,inf( 2000000006 )≈ 3313613.9 , Δ≈-0.0085, k(m)= 1.05105
G(2000000008) = 3261215,inf( 2000000008 )≈ 3233495.9 , Δ≈-0.0085, k(m)= 1.02564
G(2000000010) = 8478380,inf( 2000000010 )≈ 8407089.5 , Δ≈-0.0084, k(m)= 2.66667
G(2000000012) = 3180443,inf( 2000000012 )≈ 3152658.5 , Δ≈-0.0087, k(m)= 1
G(4000000000) = 7930427, inf( 4000000000 )≈ 7891735.0 , Δ≈-0.0049, k(m)= 1.33333
G(4000000002) = 11887591,inf( 4000000002 )≈ 11837602.6 , Δ≈-0.0042, k(m)= 2
G(4000000004) = 9156520, inf( 4000000004 )≈ 9115760.4 , Δ≈-0.0045, k(m)= 1.54014
G(4000000006) = 6404412, inf( 4000000006 )≈ 6373721.7 , Δ≈-0.0048, k(m)= 1.07686
G(4000000008) = 12198479,inf( 4000000008 )≈ 12141765.9 , Δ≈-0.0046, k(m)= 2.05139
G(4000000010) = 7926931, inf( 4000000010 )≈ 7892524.4 , Δ≈-0.0043, k(m)= 1.33347
G(4000000012) = 6249883, inf( 4000000012 )≈ 6220979.0 , Δ≈-0.0046, k(m)= 1.05105
G(6000000000) = 22899781,inf( 6000000000 )≈ 22831687.7 , Δ≈-0.0030, k(m)= 2.66667
G(6000000002) = 8585981 ,inf( 6000000002 )≈ 8563011.4 , Δ≈-0.0027, k(m)= 1.00013
G(6000000004) = 8588030 ,inf( 6000000004 )≈ 8561882.9 , Δ≈-0.0030, k(m)= 1
G(6000000006) = 26447626,inf( 6000000006 )≈ 26372932.4 , Δ≈-0.0028, k(m)= 3.08027
G(6000000008) = 8957244 ,inf( 6000000008 )≈ 8934138.7 , Δ≈-0.0026, k(m)= 1.04348
G(6000000010) = 11446102,inf( 6000000010 )≈ 11415843.9 , Δ≈-0.0026, k(m)= 1.33333
G(6000000012) = 17617549,inf( 6000000012 )≈ 17563755.4 , Δ≈-0.0031, k(m)= 2.05139
G(8000000000) = 14862150,inf( 8000000000 )≈ 14841172.2 , Δ≈-0.0014, k(m)= 1.33333
G(8000000002) = 11485548,inf( 8000000002 )≈ 11469257.9 , Δ≈-0.0014, k(m)= 1.0304
G(8000000004) = 22296318,inf( 8000000004 )≈ 22261758.3 , Δ≈-0.0016, k(m)= 2
G(8000000006) = 11146652,inf( 8000000006 )≈ 11131349.1 , Δ≈-0.0014, k(m)= 1.00004
G(8000000008) = 17167422,inf( 8000000008 )≈ 17143070.4 , Δ≈-0.0014, k(m)= 1.54014
G(8000000010) = 29840750,inf( 8000000010 )≈ 29801550.7 , Δ≈-0.0013, k(m)= 2.67738
G(8000000012) = 11998604,inf( 8000000012 )≈ 11986401.1 , Δ≈-0.0010, k(m)= 1.07686
G(10000000000) = 18200488,inf( 10000000000 )≈ 18189357.2 , Δ≈-0.00061, k(m)= 1.333
G(10000000002) = 27302893,inf( 10000000002 )≈ 27284035.8 , Δ≈-0.00069, k(m)= 2
G(10000000004) = 13655366,inf( 10000000004 )≈ 13642017.9 , Δ≈-0.00098, k(m)= 1
G(10000000006) = 13742400,inf( 10000000006 )≈ 13734820.7 , Δ≈-0.00055, k(m)= 1.0068
G(10000000008) = 27563979,inf( 10000000008 )≈ 27543883.7 , Δ≈-0.00073, k(m)= 2.019
G(10000000010) = 28031513,inf( 10000000010 )≈ 28014088.3 , Δ≈-0.00062, k(m)= 2.0535
G(10000000012) = 13654956,inf( 10000000012 )≈ 13644784.5 , Δ≈-0.00074, k(m)= 1.0002
显然,只要修正系数μ的取值不要离开统计计算的区域过远,那么素对下界计算值的计算精度就能够得到保障。
|
|