|
题:已知 a,b,c>0 ,证明不等式:(1+a/b)(1+b/c)(1+c/a)≥2[1+(a+b+c)/(abc)^(1/3)]。
证:因 a,b,c∈R+,所以
(1+a/b)(1+b/c)(1+c/a)=2+b/a+c/a+a/b+c/b+a/c+b/c
=(a+b+c)(1/a+1/b+1/c)-1≥3(a+b+c)/(abc)^(1/3)-1
=2(a+b+c)/(abc)^(1/3)+(a+b+c)/(abc)^(1/3)-1
≥2(a+b+c)/(abc)^(1/3)+2=2[1+(a+b+c)/(abc)^(1/3)],
即(1+a/b)(1+b/c)(1+c/a)≥2[1+(a+b+c)/(abc)^(1/3)](仅当a=b=c时等号成立)。 |
|