|
题:a,b,c,d>0,证明不等式 (a+b+c+d)/(abcd)≤1/a^3+1/b^3+1/c^3+1/d^3。
思路:由a,b,c,d>0,有1/a^3+1/b^3+1/c^3+1/d^3
=(1/3a^3+1/3b^3+1/3c^3)+(1/3d^3+1/3a^3+1/3b^3)
+(1/3d^3+1/3a^3+1/3c^3)+(1/3c^3+1/3d^3+1/3b^3)
≥1/abc+1/abd+1/adc+1/dbc=(a+b+c+d)/(abcd)。(仅当a=b=c=d时等号成立) |
|