|
\(记△ABC内角A, B, C的对边分别为a, b, c,\)
\(以a, b, c为边长的三个正三角形面积分别为S_{1}, S_{2}, S_{3},\)
\(且S_{1}-S_{2}+S_{3}=\frac{\sqrt{3}}{2}, \sin B=\frac{1}{3}.\)
\((1),求\ S_{△ABC}\)
\((2),若\sin A\sin C=\frac{\sqrt{2}}{3}, 求\ b.\)
\(解:设a=k\sin A,b=k\sin B,c=k\sin C,\)
\(S_{1}-S_{2}+S_{3}=\frac{((k\sin A)^2-(k\sin B)^2+(k\sin C)^2)\sin(60^\circ)}{2}=\frac{\sqrt{3}}{2}\)
\((k\sin A)^2-(k\sin B)^2+(k\sin C)^2=2\)
\(余弦定理:\)
\(2(k\sin A)(k\sin C)(\cos B)=(k\sin A)^2-(k\sin B)^2+(k\sin C)^2=2\)
\(2k^2(\sin A\sin C )(\cos B)=2\)
\(2k^2(\frac{\sqrt{2}}{3})(\frac{\sqrt{8}}{3})=2\)
\(k=\frac{3}{2}\)
\((1),S_{△ABC}=\frac{(k\sin A)(k\sin C)\sin B}{2}=\frac{\sqrt{2}}{8}\)
\((2),b=k\sin B=\frac{3}{2}×\frac{1}{3}=\frac{1}{2}\)
\(或,\frac{S_{△ABC}}{2}=\frac{\frac{(k\sin A)(k\sin C)\sin B}{2}}{2(k\sin A)(k\sin C)(\cos B)}=\frac{\sin B}{4\cos B}\ \ \ S_{△ABC}=\frac{\sqrt{2}}{8}\) |
|