|
易知, 经过\(A(-1,0), B(1,0), C(0,4), D(2,2)\)四点的圆锥曲线可表示为:
\[8(5 - 3t){x^2} - 30(1 - t)xy + (5 + 9t){y^2} - 2(5 + 21t)y - 8(5 - 3t) = 0\]
再根据一般椭圆\[a{x^2} + 2bxy + c{y^2} + 2dx + 2ey + f = 0\]
的面积式
\[S = \frac{{|a{e^2} + {b^2}f + c{d^2} - acf - 2bde|}}{{\sqrt {{{(ac - {b^2})}^3}} }}\pi \]
得到本题的面积表示
\[S = \frac{{7200\pi t(5 - 3t)}}{{\sqrt {{{( - 25 + 690t - 441{t^2})}^3}} }}\]
由此求出面积最值
\[{S_{\max }} = \frac{{ - 24559 + {{(1197248878435121 - 84577167360000i\sqrt {2081} )}^{1/3}} + {{(1197248878435121 + 84577167360000i\sqrt {2081} )}^{1/3}}}}{{17640}}\pi \approx 47.347348\]
|
|