|
定义2,空集这个术语,表示没有元素的想象性集合;由确定个数的确定事物为元素组成的整体,而且整体不能作为集合元素的集合,叫做现实的正常集合。其中的术语“元素个数”具有忽略现实集合各个元素性质与大小差别的意义,元素个数多少的表达符号叫做理想自然数(在暂时不联系现实数量的纯粹数学研究中可以简称为自然数)。
这个定义下的现实正常集合需要用一篮子苹果、一家人、一班学生等实例进行说明:其中自然数(即元素个数的表达符号)是古代人创造的由0、1、2、3、4、5、6、7、8、9十个符号与十进记数法表示的数。由此出发,就有了形式逻辑下,需要的背熟自然数的加法、乘法的运算法则。自然数的表达符号及其运算法则就构成了现行的自然数的初步理论。但在自然数应用时,不能忘掉它们与现实数量的关系,例如; 虽然从纯理论上可以讲:理想自然数10比9大,但还需要知道“9个大苹果比十个小苹果分量大、养分多”。使用自然数表达线段长度的毫米数时,需要知道:“线段长度具有测不准性,使用自然数表示两个线段毫米数的和时,需要进行误差分析”。这个自然数概念的修改说明:自然数理论阐述时,需要使用毛泽东著《矛盾论》中说的“对立统一的法则,是唯物辩证法的最根本的法则”、“一切事物中包含的矛盾方面的相互依赖和相互斗争,决定一切事物的生命,推动一切事物的发展。没有什么事物是不包含矛盾的,没有矛盾就没有世界”的论述。也需要使用毛泽东在《实践论》中说的“实践、认识,再实践、再认识,这种形式,循环往复以至无穷,而实践和认识之每一循环都比较地进到了高一级的程度”的论述。
对于现行教科书称N={0,1,2,3,……}为自然数无穷集合的论述,也需要根据实践讨论它的来源于有穷集合的本质及其性质。首先,根据自然数的十进计数法可以提出如下的三个以有穷集合为项的无穷序列 :
{0,1},{0,1,2},……,{0,1,2,……,n},…… (1)
或{0,1,2,……,9},{0,1,2,……,19},……,{0,1,2,……,10n-1}, ……(2)
或{0,1},{0,1,2,3,4},……,{0,1,2,……, },……(3)
然后使用广义极限的方法,得到这三个无穷序列的趋向性极限是想象性的元素个数为+∞的无穷集合。由于符号+∞是华东师大《数学分析》上册1980年版80 页中讲的“非正常(或称广义)极限[3]”性质的“非正常实数”。序列(1)中各个集合的元素个数为无穷数列{n+1},序列(2)中各个集合的元素个数为无穷数列{10n},序列(3)中各个集合的元素个数为无穷数列 ,虽然这三元素个数列的广义极限都是+∞,根据菲赫金哥尔茨《微积分学教程》第一卷一分册整序变量的计算不定式,定值法, 与 型不定式定值法计算中都可以使用∞与0的取极限之前变数计算不定式的值。上述三个+∞ 表示的多少是不相同的:(2)式表示的比(1)式表示的元素个数多,(3)式表示的元素个数比(1)(2)式都多。康托尔把无穷集合元素看做定数,提出的无穷基数的做法违背事实;造成了正整数集合1,2,3,……与其平方得到的它的真子集1,4,9,……元素个数相等的做法是错误的,事实上,这两个集合的元素个数分别为: 。使用《微积分学教程》一卷第一分册中,整序变量中的不定式定值法,可以得到两者的比为: 这说明正整数集合1,2,3,……比其真子集1,4,9,……的元素个数多得多;由于对无穷集合一一对应法则进行不到底,不能使用“一一对应法则,得到无穷集合元素个数可以相等”的的集合论,应当提出无穷自然数集合如下定义。
定义3:元素个数为有限理想自然数的正常集合叫做有穷自然数集合;若以有穷自然数集合为项的无穷序列的元素个数序列的趋向为包含所有自然数的元素个数为非正常实数+∞的想象性自然数集合,则称:这样的元素个数为非正常实数+∞的含有所有自然数的,不可构造完毕的想象性质的理想性无穷性质的自然数集合;且称N={0,1,2,3,……}为非正常集合。
|
|