数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2415|回复: 0

希尔伯特认为是难题之答案

[复制链接]
发表于 2022-11-2 20:42 | 显示全部楼层 |阅读模式
解函数不定方程A^(32n+2)+B^(32n+6)=C^(32n+10)
求出此不定方程的正整数通解式?
其中一个答案是:
A=2^(32n^2+14n+1)*u*v*[u^(32n+2)-v^(32n+2)]^[(256n^2+128n+15)k+64n^2+36n+5]*[u^(32n+2)+v^(32n+2)]^[(256n^2+128n+15)k+160n^2+78n+9]
B=2^(32n^2+10n)*[u^(32n+2)-v^(32n+2)]^[(256n^2+96n+5)k+64n^2+28n+2]*[u^(32n+2)+v^(32n+2)]^[(256n^2+96n+5)k+160n^2+58n+3]
C=2^(32n^2+6n)*[u^(32n+2)-v^(32n+2)]^[(256n^2+64n+3)k+64n^2+20n+1]*[u^(32n+2)+v^(32n+2)]^[(256n^2+64n+3)k+160n^2+38n+2]
其中,n、k为0或正整数,u、v为正整数,u>v
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-30 00:11 , Processed in 0.085360 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表