|
各个方程都不好解,从简到难,先解两个最简单的(费尔马1早期的解):
解函数丢番图方程X^(2n+1)+Y^(2n+2)=Z^(4n+3)
其中一组通解公式为:
X=2^(8n^2+6n-4)
*uv
*[u^(2n+1)-v^(2n+1)]^[ (8n^2+14n+6)k+8n^2+6n]
*[u^(2n+1)+v^(2n+1)]^[ (8n^2+14n+6)k+16n+16]
Y=2^(8n^2+2n-3)
*[u^(2n+1)-v^(2n+1)]^[ (8n^2+10n+3)k+8n^2+2n+1]
*[u^(2n+1)+v^(2n+1)]^[ (8n^2+10n+3)k+16n+8]
Z=2^(4n^2+2n-2)
*[u^(2n+1)-v^(2n+1)]^[ (4n^2+6n+2)k+4n^2+2n]
*[u^(2n+1)+v^(2n+1)]^[ (4n^2+6n+2)k+8n+6]
其中,n、u、v为正整数,k为0或正整数,u>v
令n=1,则三指数为3,4,7
X的底数为2的指数等于(4*7*1+2)/3=10
Y的底数为2的指数等于7;
Z的底数为2的指数等于4;
X^3=2^30
Y^4=2^28
Z^7=2^28
令n=2,则三指数为5,6,11
X的底数为2的指数等于(6*11*3+2)/5=40
Y的底数为2的指数等于11*3=33;
Z的底数为2的指数等于6*3=18;
X^5=2^200
Y^6=2^198
Z^11=2^198
|
|