|

楼主 |
发表于 2023-1-14 15:33
|
显示全部楼层
本帖最后由 dodonaomikiki 于 2023-1-15 16:21 编辑
\( Set: z=-x-y \)
\( \Longrightarrow \Phi=xyz+\lambda( x^2+y^2+z^2-1 ) \)
\( =xy(-x-y)+\lambda( x^2+y^2+ x^2+2xy+y^2-1 ) \)
\( =-x ^2y-xy ^2 +\lambda( 2x^2+2y^2+2xy-1 ) \)
\begin{align*}
\Longrightarrow
\frac{\partial \Phi}{ \partial x }&=-2xy-y^2+\lambda( 4x+2y)=0......(1)\\
\frac{\partial \Phi}{ \partial y }&=-x^2-2xy+\lambda( 4y+2x)=0......(2)\\
\frac{\partial \Phi}{ \partial \lambda }&=2x^2+2y^2+2xy-1=0......(3)\\
\end{align*}
\( (3)\Longrightarrow 2xy=1- 2x^2-2y^2 \)
代入......(1) ......(2)
\( \Longrightarrow (1+3xy)(x-y)=0 \)
\( x=y \)这个解答,
陆老师已经解惑!
\( \Longrightarrow 当xy=\frac{-1}{3} \)
代入......(3)
\( \Longrightarrow 18x^4-15x^2+2=0 \)
\( \Longrightarrow \) 两组解
\( (A) x=\frac{ \sqrt{6} }{3},y=, \frac{ -\sqrt{6} }{6}, z=\frac{- \sqrt{6} }{6} \)
\( (B) x=\frac{ -\sqrt{6} }{3},y=, \frac{ \sqrt{6} }{6}, z=\frac{ \sqrt{6} }{6} \)
至此,结果已不重要!【当然,也是不言而喻】
却可见,轮换对称性
|
|