|

楼主 |
发表于 2023-1-13 20:52
|
显示全部楼层
- \!\(\*OverscriptBox["d", "_"]\) = d = 0;
- \!\(\*OverscriptBox["a", "_"]\) = a = 1; c = (-\[Lambda] v)/(
- 1 - \[Lambda] v);
- \!\(\*OverscriptBox["c", "_"]\) = (-\[Lambda]/ v)/(
- 1 - \[Lambda] /v);(*假设
- \!\(\*OverscriptBox["DC", "\[RightVector]"]\)/
- \!\(\*OverscriptBox["AC", "\[RightVector]"]\)=\[Lambda] v*)
- KAB[a_, b_] := (a - b)/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["KAB", "_"]\)[a_, b_] := 1/KAB[a, b];(*复斜率定义*)
- KAB[a_, b_, c_] := KAB[a, b]/KAB[b, c];(*e^(2iB) 等于复斜率相除*)
- \!\(\*OverscriptBox["Jd", "_"]\)[k1_, a1_, k2_, a2_] := -((a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\) - (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(
- k1 - k2));(*复斜率等于k1,过点A1与复斜率等于k2,过点A2的直线交点*)
- Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\)) - k1 (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(k1 - k2));
- i = Jd[KAB[d, c] w, d, v KAB [a, c], c];
- \!\(\*OverscriptBox["i", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[KAB[d, c] w, d, v KAB [a, c],
- c];(*假设w=e^(2i\[Angle]CDI)*)
- h = Jd[KAB[d, a]/w, d, v KAB [a, c], c];
- \!\(\*OverscriptBox["h", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[KAB[d, a]/w, d, v KAB [a, c], c];
- Simplify[{1, i,
- \!\(\*OverscriptBox["i", "_"]\), h,
- \!\(\*OverscriptBox["h", "_"]\)}]
- Simplify[{2, KAB[d, a], KAB[i, a], , KAB[h, a], KAB[a, c]}]
- Simplify[{3, KAB[d, a, i], KAB[h, a, c]}]
- Simplify[{4, (a - d)/(a - i), (a - h)/(
- a - c), , (a - d)/(a - i)/(a - h)/(a - c)}]
- Factor[{5, (a - d)/(a - i), (a - h)/(
- a - c), , (a - d)/(a - i)/(a - h)/(a - c)}]
- (*Expand[{(a-d)/(a-i),(a-h)/(a-c),,(a-d)/(a-i)/(a-h)/(a-c)}]*)
复制代码
上楼是对的,这是不垂直的情形,但是上传不了图片。用角平分线定理如何证明? |
|