|
本帖最后由 天山草 于 2023-4-2 18:42 编辑
上面这个三角形符合:CD = CG,EG = GC,AD=AC,AB=AC。tan∠ABC =\( \sqrt{15/7}\),∠ABC 约等于 28.955度。
- Clear["Global`*"];
- \!\(\*OverscriptBox[\(i\), \(_\)]\) = i = 0; b = u - I; \!\(\*OverscriptBox[\(b\), \(_\)]\) = u + I; c = v - I;
- \!\(\*OverscriptBox[\(c\), \(_\)]\) = v + I; a = ((u + v) + I (v u - 1))/(u v + 1);
- \!\(\*OverscriptBox[\(a\), \(_\)]\) = ((u + v) - I (v u - 1))/( u v + 1);
- d = -I; \!\(\*OverscriptBox[\(d\), \(_\)]\) = I;
- Simplify@Solve[{f \!\(\*OverscriptBox[\(f\), \(_\)]\) == 1, (a - d)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\)) == (a - f)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(f\), \(_\)]\)), f != d}, {f, \!\(\*OverscriptBox[\(f\), \(_\)]\)}];
- f = (2 I u v + u + v)/(2 u v + I u + I v); \!\(\*OverscriptBox[\(f\), \(_\)]\) = (-2 I u v + u + v)/( u (2 v - I) - I v);
- Simplify@Solve[{e \!\(\*OverscriptBox[\(e\), \(_\)]\) == 1, (b - f)/(\!\(\*OverscriptBox[\(b\), \(_\)]\) - \!\(\*OverscriptBox[\(f\), \(_\)]\)) == (b - e)/(\!\(\*OverscriptBox[\(b\), \(_\)]\) - \!\(\*OverscriptBox[\(e\), \(_\)]\)), e != f}, {e, \!\(\*OverscriptBox[\(e\), \(_\)]\)}];
- e = (-2 I u v + u - 3 v)/(-2 u v + I u - 3 I v); \!\(\*OverscriptBox[\(e\), \(_\)]\) = -((2 I u v + u - 3 v)/( 2 u v + I u - 3 I v));
- Simplify@Solve[{(a - d)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\)) == (a - g)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(g\), \(_\)]\)), (c - g)/(\!\(\*OverscriptBox[\(c\), \(_\)]\) - \!\(\*OverscriptBox[\(g\), \(_\)]\)) == (c - e)/(\!\(\*OverscriptBox[\(c\), \(_\)]\) - \!\(\*OverscriptBox[\(e\), \(_\)]\))}, {g, \!\(\*OverscriptBox[\(g\), \(_\)]\)}];
- g = (u^2 (4 I v^2 + 4 v - 9 I) + 2 u v (2 v + 7 I) - 9 I v^2)/( u^2 (4 v^2 + 9) - 14 u v + 9 v^2); \!\(\*OverscriptBox[\(g\), \(_\)]\) = ( u^2 (-4 I v^2 + 4 v + 9 I) + 2 u v (2 v - 7 I) + 9 I v^2)/( u^2 (4 v^2 + 9) - 14 u v + 9 v^2);
- Simplify@Solve[{(c - d) (\!\(\*OverscriptBox[\(c\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\)) == (c - g) (\!\(\*OverscriptBox[\(c\), \(_\)]\) - \!\(\*OverscriptBox[\(g\), \(_\)]\)), u < 0, v > 0}, {u, v}];
- v = -((2 Sqrt[7 u^2 + 16] u + u)/(4 u^2 + 9));c = Simplify[v - I]; \!\(\*OverscriptBox[\(c\), \(_\)]\) = Simplify[v + I];
- a = Simplify[((u + v) + I (v u - 1))/(u v + 1)]; \!\(\*OverscriptBox[\(a\), \(_\)]\) = Simplify[((u + v) - I (v u - 1))/(u v + 1)];
- e = Simplify[(-2 I u v + u - 3 v)/(-2 u v + I u - 3 I v)]; \!\(\*OverscriptBox[\(e\), \(_\)]\) = Simplify[-((2 I u v + u - 3 v)/(2 u v + I u - 3 I v))];g = Simplify[( u^2 (4 I v^2 + 4 v - 9 I) + 2 u v (2 v + 7 I) - 9 I v^2)/( u^2 (4 v^2 + 9) - 14 u v + 9 v^2)];
- \!\(\*OverscriptBox[\(g\), \(_\)]\) = Simplify[(u^2 (-4 I v^2 + 4 v + 9 I) + 2 u v (2 v - 7 I) + 9 I v^2)/( u^2 (4 v^2 + 9) - 14 u v + 9 v^2)];
- Simplify[(e - g) (\!\(\*OverscriptBox[\(e\), \(_\)]\) - \!\(\*OverscriptBox[\(g\), \(_\)]\)) == (c - g) (\!\(\*OverscriptBox[\(c\), \(_\)]\) - \!\(\*OverscriptBox[\(g\), \(_\)]\))]
- Simplify@Solve[{(a - d) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\)) == (a - c) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(c\), \(_\)]\)), u < 0}, {u}];
- u = -Sqrt[15]; v = -((2 Sqrt[7 u^2 + 16] u + u)/(4 u^2 + 9));
- a = ((u + v) + I (v u - 1))/(u v + 1); \!\(\*OverscriptBox[\(a\), \(_\)]\) = ((u + v) - I (v u - 1))/( u v + 1); b = u - I;
- \!\(\*OverscriptBox[\(b\), \(_\)]\) = u + I; c = v - I; \!\(\*OverscriptBox[\(c\), \(_\)]\) = v + I;
- Simplify[(a - b) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)) == (b - c) (\!\(\*OverscriptBox[\(b\), \(_\)]\) - \!\(\*OverscriptBox[\(c\), \(_\)]\))]
- k[a_, b_] := (a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)); (*复斜率定义*)
- tan\[Angle][a_, b_, c_] := I (k[b, a] - k[b, c])/( k[b, a] + k[b, c]); (*从AB边逆时针转到BC边的有向角\[Angle]ABC的正切*)
- tan\[Angle]ABC = Simplify[tan\[Angle][c, b, a]];
- tan\[Angle]ABC = Sqrt[15]/7; N[180/\[Pi] ArcTan[Sqrt[15]/7]]
- N[{u, v}]
- N[{a, b, c}]
复制代码 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|