数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
查看: 9736|回复: 14

求证 sin(a)sin(b+c)/[sin(c)sin(a-b)+sin(b)sin(c+a)]=1

[复制链接]
发表于 2023-4-14 10:14 | 显示全部楼层 |阅读模式
sin(a)sin(b+c)sin(c)sin(ab)+sin(b)sin(c+a)1

sin2(b)+sin2(a+b)2sin(b)sin(a+b)cos(a)(sin2(c)+sin2(ac)+2sin(c)sin(ac)cos(a)1
 楼主| 发表于 2023-4-15 08:21 | 显示全部楼层
ABC32A,2B,2C,  

2cos(A)cos(B)cos(C)sin(A)cos(A)+sin(B)cos(B)+sin(C)cos(C)1
回复 支持 反对

使用道具 举报

发表于 2023-4-15 19:21 | 显示全部楼层
整天做题为乐?
回复 支持 反对

使用道具 举报

发表于 2023-4-16 19:18 | 显示全部楼层


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

评分

参与人数 1威望 +20 收起 理由
王守恩 + 20 很给力!

查看全部评分

回复 支持 反对

使用道具 举报

发表于 2023-4-16 21:32 | 显示全部楼层


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

评分

参与人数 1威望 +20 收起 理由
王守恩 + 20 很给力!

查看全部评分

回复 支持 反对

使用道具 举报

发表于 2023-4-19 14:58 | 显示全部楼层
本帖最后由 Future_maths 于 2023-4-19 15:00 编辑

发错了图片
回复 支持 0 反对 1

使用道具 举报

发表于 2023-4-19 14:59 | 显示全部楼层

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

评分

参与人数 1威望 +20 收起 理由
王守恩 + 20 很给力!

查看全部评分

回复 支持 反对

使用道具 举报

发表于 2023-4-19 18:43 | 显示全部楼层


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

评分

参与人数 1威望 +15 收起 理由
王守恩 + 15 很给力!

查看全部评分

回复 支持 反对

使用道具 举报

发表于 2023-4-19 18:44 | 显示全部楼层


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

评分

参与人数 1威望 +15 收起 理由
王守恩 + 15 很给力!

查看全部评分

回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-4-20 08:21 | 显示全部楼层
简单的事实,如何证明?

已知一个三角形的2条角平分线(AD,BE)相等,求证是等腰三角形。

ABC32A,2B,2C,BC=sin(2A),CA=sin(2B),AB=sin(2C)

ABD,ADsin(2B)=sin(2C)sin(2B+A)AD=sin(2B)sin(2C)sin(2B+A)

ABE,BEsin(2A)=sin(2C)sin(2A+B)BE=sin(2A)sin(2C)sin(2A+B)

∵AD=BE,即\frac{\sin(2B)\sin(2C)}{\sin(2B+A)}=\frac{\sin(2A)\sin(2C)}{\sin(2A+B)}如何证明\ \ A=B

  1. Table[NSolve[{Sin[2 A \[Pi]/180]/Sin[2 B \[Pi]/180]
  2. == Sin[(2 A + B) \[Pi]/180]/Sin[(2 B + A) \[Pi]/180],
  3. 90 > B > 0}, {B}], {A, 1, 90}]
复制代码
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-6 13:15 , Processed in 0.098510 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: