|
答案为e。
\(\displaystyle\lim_{n\to\infty}\bigg\{\sum_{k=0}^{\infty}\frac{1}{(k+1)!}+\sum_{k=0}^{\infty}\frac{1}{(k+2)!}+\sum_{k=0}^{\infty}\frac{1}{(k+3)!}+…+\sum_{k=0}^{\infty}\frac{1}{(k+n)!}\bigg\}\)
\(=\frac{1}{1!}+\frac{2}{2!}+\frac{3}{3!}+\frac{4}{4!}+\frac{5}{5!}+\frac{6}{6!}+\frac{7}{7!}+…+\frac{n}{n!}\)
\(=\frac{1}{1!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+…+\frac{1}{(n-1)!}\)
\(=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+…+\frac{1}{(n-1)!}\)
\(\displaystyle=\sum_{k=0}^{\infty}\frac{1}{k!}=e\)
注意下面这些算式之间的区别。
\(1,\displaystyle\sum_{k=0}^{\infty}\frac{1+a}{k!}\ \ \ \ a=0,1,2,3,4,5,6,7,8,9,...\)
\(e,\ 2e,\ 3e,\ 4e,\ 5e,\ 6e,\ 7e,\ 8e,\ 9e,\ 10e, ...\)
\(2,\displaystyle\sum_{k=0}^{\infty}\frac{k+a}{k!}\ \ \ \ a=0,1,2,3,4,5,6,7,8,9,...\)
\(e,\ 2e,\ 3e,\ 4e,\ 5e,\ 6e,\ 7e,\ 8e,\ 9e,\ 10e ...\)
\(3,\displaystyle\sum_{k=1}^{\infty}\frac{k+a}{k!}\ \ \ \ a=0,1,2,3,4,5,6,7,8,9,...\)
\(e,2e-1,3e-2,4e-3,5e-4,6e-5,...\)
\(4,\displaystyle\sum_{k=1}^{\infty}\frac{k-a}{k!}\ \ \ \ a=0,1,2,3,4,5,6,7,8,9,...\)
\(1,\ 2-e,\ 3-2e,4-3e,5-4e,6-5e,...\)
\(5,\displaystyle\sum_{k=0}^{\infty}\frac{k-a}{k!}\ \ \ \ a=0,1,2,3,4,5,6,7,8,9,...\)
\(e,0,-e,-2e,-3e,-4e,-5e,-6e,-7e, ...\)
............. |
|