|

楼主 |
发表于 2023-5-5 20:25
|
显示全部楼层
三、结论与建议
本文介绍并分类了不同类型的证明错误。对于读者或数学教育工作者来说,了解证明错误类型的好处在于:在书写数学证明时更不容易犯错,并且可以为大学教师确认学生的证明和设计教材提供参考。例如证明确认的学习任务,证明确认即判断证明的正确性[17],给定一个命题与已经写好的证明过程,但证明过程正确与否为未知。任务参与者需在阅读证明过程后,去进行判断,确认该证明过程是否正确符合证明命题,可否为证明命题之证明[22]。如果教师想设计一个证明确认的学习任务,并且题材默认是无效证明,教师就可以从这些错误类型介绍中选择自己希望出现在试题中的错误类别,然后再设计任务的证明内容。
需特别注意的是,在使用本文的分类审查证明错误时,读者需要注意在证明中发生的错误可能包含一种或多种错误类型。例如图 13 是文献中一个证明有两个错误的说明:
图 13 :一个证明中出现两种错误类型之例[30][p.1114]
在图 13 之中,此命题的目标是证明函数「 f 为 one-to-one 」。第 1 行的 a1 和 a2 出现时没有宣告,此例恰能表现出学生对于未宣告变量的错误理解,进而导致证明不正确。如果有宣告,其实此例停在第 4 行就可以得证函数 f 为 one-to-one 。但从第 5 行开始的书写过程,可看出学生并不清楚和的含意,反而将数字代入而得到函数 f 不为 one-to-one 的错误结论。单纯由此例看来,这位学生可能不知道如何证明一个函数是 one-to-one 。因此,本例中出现了两种错误类型:「出现未宣告变量」、「对定义的误解」。
本文提供相对于过往文献较完整分类之证明错误类型介绍,同时兼具宏观性与微观性,在三大分类之下还细分不同子类型,希望能提供给读者更方便地进行错误类型说明和文本设计。表 2 是将绪论中提及过往文献曾描述之错误类型归类至本文分类,显示本文之分类考量的确涵盖这些文献之错误类型。
表 2 :证明错误类型与过往文献曾提及错误对照表
值得一提的是,本文所提供的证明错误分类,仅仅以证明成品来分类,不一定能完全反映写证明作者之想法,不宜过度推论。例如遇到可能对应多种类别的错误时,其产生原因只有原作者知道,需要进一步访谈才能确定真正的原因为何。而对于未来的相关研究方面,今后可进一步对错误分类进行研究,比较不同类型的错误,探讨面对不同错误类型,学生的表现有无不同?或是从学习的角度切入,对产生不同类型错误的学生提出相关的学习建议。
参考文献
[1]国家教育研究院。十二年国民基本教育课程纲要:数学领域。新北市:国家教育研究院,2018。
[2]许介彦。数学归纳法使用上易犯的错误。数学传播季刊,26(1),77-82,2002。
[3]L. Alcock and K. Weber, Proof validation in real analysis: Inferring and checking warrants, The Journal of Mathematical Behavior, 24(2005), 125-134.
[4]D. Alibert and M. Thomas, Research on mathematical proof, in D. Tall (Ed.), Advanced Mathematical Thinking (pp.215-230). Dordrecht, the Netherlands: Kluwer Academic Publishers, 1991.
[5]S. K. Bleiler, D. R. Thompson, D. R., and M. Krajcevski, Providing written feedback on students' mathematical arguments: Proof validations of prospective secondary mathematics teachers, Journal of Mathematics Teacher Education, 17(2014), No.2, 105-127.
[6]M. De Villiers, Rethinking Proof with the Geometer's Sketchpad, Emeryville, CA: Key Curriculum Press, 1999.
[7]R. Friedberg, An Adventurer's Guide to Number Theory, New York, NY: Dover Publications, 1968.
[8]P. O. Haavold, Impediments to mathematical creativity: Fixation and flexibility in proof validation, The Mathematics Enthusiast, 18(2021), No.1, 139-159.
[9]G. Harel and L. Sowder, Toward comprehensive perspectives on the learning and teaching of proof, in F. K. Lester, Jr. (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp.805-842). Greenwich, CT: Information Age Publishing, 2007.
[10]M. Inglis and L. Alcock, Expert and novice approaches to reading mathematical proofs, Journal for Research in Mathematics Education, 43(2012), No.4, 358-390.
[11]M. Inglis, J. P. Mejia-Ramos, K. Weber, and L. Alcock, On mathematicians' different standards when evaluating elementary proofs, Topics in Cognitive Science, 5(2013), No.2, 270-282.
[12]Y.-Y. Ko, Mathematics teachers' conceptions of proof: Implications for educational research, International Journal of Science and Mathematics Education, 8(2010), No.6, 1109-1129.
[13]Y.-Y. Ko and E. J. Knuth, Validating proofs and counterexamples across content domains: Practices of importance for mathematics majors, The Journal of Mathematical Behavior, 32( 2013), No.1, 20-35.
[14]Y. Lai and K. Weber, Factors mathematicians profess to consider when presenting pedagogical proofs, Educational Studies in Mathematics, 85(2014), 93-108.
[15]Y. Lai, K. Weber, and J. P. Mejia-Ramos, Mathematicians' perspectives on features of a good pedagogical proof, Cognition and Instruction, 30(2012), No.2, 146-169.
[16]K. Lew, T. P. Fukawa-Connelly, J. P. Mejia-Ramos, and K. Weber, Lectures in advanced mathematics: Why students might not understand what the mathematics professor is trying to convey, Journal for Research in Mathematics Education, 47(2016), 162-198.
[17]N. Marco, A. Palatnik, and B. B. Schwarz, Mind the gaps: Gap-filling in proving activities, For the Learning of Mathematics, 41(2021), No.2, 21-25.
[18]National Council of Teachers of Mathematics, Principles and Standards for School Mathematics, Reston, VA: NCTM, 2000.
[19]National Council of Teachers of Mathematics, Focus in High School Mathematics: Reasoning and Sense Making, Reston, VA: NCTM, 2009.
[20]R. A. Powers, C. Craviotto, and R. M. Grassl, Impact of proof validation on proof writing in abstract algebra, International Journal of Mathematical Education in Science and Technology , 41 (2010), No.4, 501-514.
[21]A. Samkoff and K. Weber, Lessons learned from an instructional intervention on proof comprehension, The Journal of Mathematical Behavior, 39(2015), 28-50.
[22]A. Selden and J. Selden, Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education, 34 (2003), No.1, 4-36.
[23]B. Shongwe, Learners' beliefs about the functions of proof: Building an argument for validity, Educational Studies in Mathematics, 107(2021), 503-523.
[24]S. G. Stavrou, Common Errors and Misconceptions in Mathematical Proving by Education Undergraduates, Retrieved January 19, 2022, from http://www.k-12prep.math.ttu.edu ... avrou01/article.pdf, 2014.
[25]J. C. Stockton and N. Wasserman, Forms of knowledge of advanced mathematics for teaching, The Mathematics Enthusiast, 14(2017), 575-606.
[26]G. J. Stylianides, A. J. Stylianides, and K. Weber, Research on the teaching and learning of proof: taking stock and moving forward, in J. Cai (Ed.), Compendium for Research in Mathematics Education (pp.237-266). Reston, VA: NCTM, 2017.
[27]D. A. Stylianou, M. L. Blanton, and E. J. Knuth, Introduction, in D. A. Stylianou, M. L. Blanton, and E. J. Knuth (Eds), Teaching and Learning Proof Across the Grades: A K-16 Perspective (pp.1-12). New York, NY: Routledge, 2009.
[28]K. Weber, Mathematicians' perspectives on their pedagogical practice with respect to proof, International Journal of Mathematics Education in Science and Technology, 43(2012), 463-482.
[29]K. Weber and J. Czocher, On mathematicians' disagreements on what constitutes a proof, Research in Mathematics Education, 21(2019), No.3, 251-270.
[30]A. Wheeler and J. Champion, Students' proofs of one-to-one and onto properties in introductory abstract algebra, International Journal of Mathematical Education in Science and Technology, 44(2013), No.8, 1107-1116.
[31]D. A. Yopp, How some research mathematicians and statisticians use proof in undergraduate mathematics, The Journal of Mathematical Behavior, 30(2011), No.2, 115-130.
陈韦仰等 好玩的数学 2023-05-05 07:05 发表于江西
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|