|
康托三分集是 \(\displaystyle\bigcap_{n=1}^\infty C_n\).其中 \(C_1=[0,1/3]\cup[2/3,1]=I_{11}\cup I_{12},\;\)一般地,
\(C_n=\displaystyle\bigcup_{k=1}^{2^n}[a_{nk}, b_{nk}],\, b_{nk}= a_{nk}{\small+3^{-n}},\,a_{(n+1,2k-1)}=a_{nk},\,a_{(n+1,2k)}=b_{nk}\small-3^{-n-1}\)
\(C_{n+1}=\displaystyle\bigcup_{k=1}^{2^{n+1}}[a_{(n+1,k)}, b_{(n+1,k)}]\) |
|