|
\(朱火华勾股数组通解公式\)
\(设\left( \frac{x}{2}\right)^2=mn{,}其中x为\ge4的偶数,且m>n{,}\ mn均为正整数,\)
\(x<\left( m-n\right){,}\ x为勾=a,m-n为股=b{,}\ \ m+n为弦=c{,}\)
\(x>\left( m-n\right){,}\ x为股=b{,}\ \ m-n为勾=a{,}\ \ m+n为弦=c{,}\)
\(则a^2+b^2=c^2\)
\(这个公式是我研究出来的,解决了古今中外数学家勾股不分,a b不分的问题,\)
\(勾股定理的定义是短边为勾,长边为股,斜边为弦。\)
\(设(x/2)^2=mn,其中x为大于等于4的偶数,且m﹥n,mn均为正整数,\)
\(则x^2+(m-n)^2=(m+n)^2\)
\(设x=mn,其中x为大于等于3的奇数,且m>n,mn均为正整数,\)
\(则x^2十[(m^2-n^2)/2]^2=[(m^2+n^2)/2]^2\)
\(设x=m+n,其中x为大于等于2的正整数,且mn均为正整数,\)
\(则[m(x+n)]^2+(2xn)^2=(x^2+n^2)^2\)
\(设x=m+n,其中x为大于等于3的正整数,且m>n,mn均为正整数,\)
\( 则[x(m-n)]^2+(2mn)^2=(m^2+n^2)^2\)
一,
\(设(x/2)^2=mn{,}其中x为\ge4的偶数,\)
\(则x^2+(m-n)^2=(m+n)^2\)
\(若m n一奇一偶没有大于1的公倍数\),
\(则x^2+(m-n)^2=(m+n)^2为勾股数本原解数组。\)
\(计算n的方法,是由分解(x/2)^2得到,\)
\((x/2)^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}\ 其中F为质因数,\)
\(取这些因数重组小于(x/2)的数积为n。(x/2)^2/n=m。\)
\(详解:根据(x/2)^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}首先计算出1和全部质因数各自从\)
\(1到n次方的积数,去掉大于等于(x/2)的积数后重组,(同底数的数不能重组)\)
\(再去掉大于等于(x/2)的积数,余下的数为n。\)
\(实例:计算x=60的全部勾股数,\)
\((60/2)^2=900=1\times2^2\times3^2\times5^2{,}\)
\(1^1=1{,}\ \ 2^1=2{,}\ \ 3^1=3{,}\ \ 5^1=5{,}\)
\(2^2=4{,}\ \ 3^2=9{,}\ \ 5^2=25{,}\)
\(2\times3=6{,}\ 2\times5=10{,}\ \ 3\times4=12{,}\ \ 3\times5=15{,}\ \ 2\times9=18{,}\ \ 4\times5=20{,}\)
\(即n小于30的数有1,2,3,4,5,6,9,10,12,15,18,25。(13个)\)
\(根据公式(X/2)^2/n=m。\)
\(所以\)
\(n=1, m=900。 n=2,m=450。 n=3, m=300。 n=4, m=225。\)
\(n=5, m=180。 n=6,m=150。 n=9, m=100。 n=10,m=90。\)
\(n=12,m=75。 n=15, m=60。 n=18,m=50。 n=20,m=45。\)
\(n=25,m=36。\)
\(代入公式得:\)
\(60^2+(900-1)^2=(900+1)^2(本原解)\)
\(60^2+(450-2)^2=(450+2)^2\)
\(60^2+(300-3)^2=(300+3)^2\)
\(60^2+(225-4)^2=(225+4)^2(本原解)\)
\(60^2+(180-5)^2=(180+5)^2\)
\(60^2+(150-6)^2=(150+6)^2\)
\(60^2+(100-9)^2=(100+9)^2(本原解)\)
\(60^2+(90-10)^2=(90+10)^2\)
\(60^2+(75-12)^2=(75+12)^2\)
\(60^2+(60-15)^2=(60+15)^2\)
\(60^2+(50-18)^2=(50+18)^2\)
\(60^2+(45-20)^2=(45+20)^2\)
\(60^2+(36-25)^2=(36+25)^2(本原解)\)
\(实例:\)
\((x/2)^2=mn,代入公式得(勾,股,弦)\)
\((4/2)^2=4\times1,(3,4,5)(本原解)\)
\((6/2)^2=9\times1,(8,6,10)(本原解)\)
\((8/2)^2=16\times1,(15,8,17)(本原解)\)
\((8/2)^2=8\times2,(6,8,10)\)
\((10/2)^2=25\times1,(24,10,26)(本原解)\)
\((12/2)^2=36\times1,(35,12,37)(本原解)\)
\((12/2)^2=18\times2,(16,12,20)\)
\((12/2)^2=12\times3,(9,12,15)\)
\((12/2)^2=9\times4,(5,12,13)(本原解)\)
\((14/2)^2=49\times1,(48,14,50)\)
\(\cdots\cdots。\)
二,
\(设x^2=mn,(其中X为\ge3的奇数){,}且m>n{,}\ m{,}n均为正整数,\)
\(则x^2+[(m-n)/2]^2=[(m+n)/2]^2。\)
\(若mn没有大于1的公约数,\)
\(则x^2+[(m-n)/2]^2=[(m+n)/2]^2为勾股数本愿解数组。\)
\(计算n的方法,是由分解X^2得到,\)
\(X^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}(其中F为质因数)\)
\(取这些因数重组小于X的数积为n{,}(X^2)/n=m。\)
\(详解:根据X^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn},首先计算出1和全部质因数各自从1到n次方的积数,\)
\(去掉大于等于X的积数后重组,(同底数的数不能重组)再去掉大于等于X的积数,余下的数为n。\)
\(实例:计算X=15时全部勾股数\)
\(X=15{,}\ \ 15^2=1\times3^2\times5^2{,}\)
\(1^1=1{,}\ \ 3^1=3{,}\ \ 5^1=5{,}\)
\(3^2=9{,}\ \ 5^2=25{,}\)
\(即n小于15的数有1,3,5,9。(4个)\)
\(根据公式X^2/n=m。\)
\(所以n=1{,}\ \ m=225。n=3,m=75。n=5,m=45。n=9,m=25。\)
\(代入公式得:\)
\(15^2+[(225-1)/2]^2=[(225+1)/2]^2(本原解)\)
\(15^2+[(75-3)/2]^2=(75+3)/2]^2\)
\(15^2+[(45-5)/2]^2=[(45+5)/2]^2\)
\(15^2+[(25-9)/2]^2=[(25+9)/2]^2(本原解)\)
\(实例:\)
\(x^2=mn,代入公式得(勾,股,弦)\)
\(3^2=9\times1,(3,4,5)(本原解)\)
\(5^2=25\times1,(5,12,13)(本原解)\)
\(7^2=49\times1,(7,24,25)(本原解)\)
\(9^2=81\times1,(9,40,42)(本原解)\)
\(9^2=27\times3,\left( 9,12,15\right)\)
\(11^2=121\times1,(11,60,61)(本原解)\)
\(13^2=169\times1,(13,84,85)(本原解)\)
\(15^2=225\times1,(15,112,113)(本原解)\)
\(15^2=75\times3,(15,36,39)\)
\(15^2=45\times5,(15,20,25)\)
\(15^2=25\times9,(15,8,17)(本原解)\)
\(\cdots\cdots。\)
三,
\(X为勾全部解的解数公式\)
\(计算全部解的解数方法,是由分解X质因数中的指数得到,与底数无关。\)
\(X=F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}(其中X为\ge3的正整数,F为质因数,n为指数)\)
\(设X为勾全部解的解数为L,指数的对应数为2n+1。\)
\(则X(奇数),L=[(2n_1+1)(2n_2+1)\dots(2n_n+1)-1]/2\)
\(则X(偶数),L=[(2n_1+1-2)(2n_2+1)\dots(2n_n+1)-1]/2\)
\(实例X=15{,}\ \ 15=3^1\times5^1{,}\)
\(代入公式得[(2×1+1)×(2×1+1)-1]/2=4组。\)
\(实例:X=60{,}\ \ 60=2^2\times3^1\times5^1{,}\)
\(代入公式得 [(2×2+1-2)×(2×1+1)×(2×1+1)-1]/2=13组,\)
四,
\(设x=m+n,其中x为\ge2的正整数,且mn均为正整数,\)
\(则[m(x+n)]^2+(2xn)^2=(x^2+n^2)^2,\)
\(若(x+n)是奇数,且与m互质,\)
\(则[m(x+n)]^2+(2xn)^2=(x^2+n^2)^2为勾股数本原解数组。\)
\(实例:\)
\(x=m+n,代入公式得(勾,股,弦)\)
\(2=1+1, (3, 4,5) (本原解)\)
\(3=1+2, (5,12,13) (本原解)\)
\(3=2+1, (8,6,10) \)
\(4=1+3, (7,24,25) (本原解)\)
\(4=2+2, (12,16,20)\)
\(4=3+1, (15,8,17) (本原解)\)
\(5=1+4, (9,40,41) (本原解)\)
\(5=2+3, (16,30,34)\)
\(5=3+2, (21,20,29) (本原解)\)
\(5=4+1, (24,10,26)\)
\(6=1+5, (11,60,61) (本原解)\)
\(6=2+4, (20,48,52) \)
\(6=3+3, (27,36,45) \)
\(6=4+2, (32,24,40)\)
\(6=5+1, (35,12,37) (本原解)\)
\(\cdots\cdots。\)
五,
\(设x=m+n,其中x为大于等于3的正整数,且m<n<x, x m n均为正整数,\)
\(则[x(n-m)]^2+(2mn)^2=(m^2+n^2)^2\)
\(若x是奇数,且m与n互质,\)
\(则[x(n-m)]^2+(2mn)^2=(m^2+n^2)^2为勾股数本原解数组。\)
\(实例:\)
\( x=m+n,代入公式得(勾,股,弦)\)
\(3=1+2, (3, 4, 5) (本原解) \)
\(4=1+3, (8,6,10)\)
\(5=1+4, (15,8,17) (本原解)\)
\(5=2+3, (5,12,13) (本原解)\)
\(6=1+5, (24,10,26)\)
\(6=2+4, (12,16,20)\)
\(7=1+6, (35,12,37) (本原解)\)
\(7=2+5, (21,20,29) (本原解)\)
\(7=3+4, (7,24,25) (本原解)\)
\(8=1+7, (48,14,50) \)
\(8=2+6, (32,24,40)\)
\(8=3+5, (16,30,34)\)
\(\cdots\cdots。\)
六,
\(连续平方和趣题:\)
\(求出n+1个连续平方数之和等于n个连续平方数之和的通解公式。\)
\(3^2+4^2=5^2\)
\(10^2+11^2+12^2=13^2+14^2\)
\(21^2+22^2+23^2+24^2=25^2+26^2+27^2\)
\(36^2+37^2+38^2+39^2+40^2=41^2+42^2+43^2+44^2\)
\(\cdots\cdots。\)
\(左边n+1个连续平方数之和=右边n个连续平方数之和,其通解公式如下:\)
\(左右共有2n+1个连续正整数,第1个正整数是n(2n+1), \)
\(最后1个正整数是n(2n+3),中间数是n(2n+1)+n。\)
\(左边第1个正整数是n(2n+1),最后1个正整数是n(2n+1)+n,\)
\(右边第1个正整数是n(2n+1)+n+1,最后1个正整数是n(2n+3)。\)
\(设n为大于等于1的正整数,x为连续正整数中的第n个正整数,且x小于等于(2n+1),\)
\(则n(2n+1)+(x-1)=z。\)
七,
\(设x=(a+b+…+n)为大于等于3的奇数,\)
\((a^2+b^2+\cdots+n^2)为y,其中abn均为正整数,\)
\(则a^2+b^2+\cdots+n^2+\left\{ \frac{(x^2-1)}{2}-\frac{(x^2-y)}{2}\right\}^2=\left\{ \frac{(x^2+1)}{2}-\frac{(x^2-y)}{2}\right\}^2\)
\(实例:x=5{,}\ \ \ \ \ 5^2+12^2=13^2{,}\)
\(5=1+1+1+1+1{,}代入公式得1^2+1^2+1^2+1^2+1^2+2^2=3^2,\)
\(5=1+1+1+2{,}代入公式得1^2+1^2+1^2+2^2+3^2=4^2,\)
\(5=1+1+3{,}代入公式得1^2+1^2+3^2+5^2=6^2,\)
\(5=1+2+2{,}代入公式得1^2+2^2+2^2+4^2=5^2,\)
\(5=1+4{,}代入公式得1^2+4^2+8^2=9^2,\)
\(5=2+3{,}代入公式得2^2+3^2+6^2=7^2,\)
简化公式:
\(设(a^2+b^2+\cdots+n^2)=x{,}其中(a+b+\cdots+n)为大于等于3的奇数,且abnx均为正整数,\)
\(则a^2+b^2+\cdots+n^2+\left\{ \frac{(x-1)}{2}\right\}^2=\left\{ \frac{(x+1)}{2}\right\}^2\)
八,
\(设x为任意正整数,\)
\(则x^2+(x+1)^2+[x(x+1)]^2=[x(x+1)+1]^2。\)
\(x=1{,}代入公式得,1^2+2^2+2^2=3^2,\)
\(x=2{,}代入公式得,2^2+3^2+6^2=7^2,\)
\(x=3{,}代入公式得,3^2+4^2+12^2=13^2,\)
\(x=4{,}代入公式得,4^2+5^2+20^2=21^2\)
\(\cdots\cdots。\)
九,
\(设x为大于等于2的正整数,n为任意正整数,x又为公式中的前项个数,\)
\(则x^n+x^n+\cdots+x^n=x^{(n+1)}){,}\ \ \ \ \ \ \ 简化公式:x(x^n)=x^{(n+1)}\)
\(x=2,\ \ \ 2^n+2^n=2^{(n+1),},\)
\(x=3,\ \ \ 3^n+3^n+3^n=3^{(n+1)},\)
\(x=4,\ \ \ 4^n+4^n+4^n+4^n=4^{(n+1),},\)
\(\cdots\cdots。\)
|
|