|

楼主 |
发表于 2023-9-6 20:01
|
显示全部楼层
本帖最后由 dodonaomikiki 于 2023-9-6 12:21 编辑
2-3部门
\begin{align*}
d=(o,o)到达y &=kx+m\\
\Longrightarrow d&= \frac{ \Bigg| m \Bigg| }{ \sqrt{k^2+1}}= \frac{ \sqrt{m^2}}{ \sqrt{k^2+1}}\\
&=\sqrt{ \frac{ 2k^2+3/2}{ k^2+1 }} \\
&=\sqrt{ \frac{ 2k^2+2- \frac{1}{2}}{ k^2+1 }} \\
&=\sqrt{ 2- \frac{ 1}{ 2( k^2+1 )} } \\
Cauz \qquad k^2 \succ O\\
\Longrightarrow \sqrt{ \frac{3}{2}} \preceq d \prec \sqrt{2} 【 Reason: k\ne \pm \infty】\\
When \qquad \ell \perp x-axis\\
x1&=x2, y1=-y2\\
Insert \qquad into \qquad 3x1x2 +4y1y2&=0\\
3x_1^2 -4y_1^2&=0\\
And, \frac{ x_1^2}{4}+\frac{ y_1^2 }{3}&=1\\
\Longrightarrow 6x_1^2& =12 \\
\Longrightarrow x_1^2& =2\\
\Longrightarrow x_1&=\pm \sqrt{2}\\
这个时候, \ell: x&=\pm \sqrt{2}\\
\end{align*} |
|