|
\(记∠DAB=a,∠DBA=k*a,恒有:\)
\(1=\frac{\sin∠DAB*\sin∠DBC*\sin∠DCA}{\sin∠DBA*\sin∠DCB*\sin∠DAC}\)
\(=\frac{\sin(a)*\sin(45)*\sin(45-k*a)}{\sin(k*a)*\sin(45)*\sin(45-a)}\)
\(=\frac{\sin(a)*\sin(45-k*a)}{\sin(k*a)*\sin(45-a)}(瞪眼)\)
\(=\frac{\sin(a)*\sin(45-1*a)}{\sin(1*a)*\sin(45-a)}(k=1)\)
\(相似的题目。\)
\(三角形ABC,∠C=90,\ E,F分别为CA,CB上的点,\ 连接EF,AF,BE,\)
\(满足∠ABE=∠BAF=30,\ \ 则∠CEF=3∠CAF。\) |
|