本帖最后由 Ysu2008 于 2025-2-1 19:51 编辑
利用点关于直线对称的坐标公式,可算得\(O'{,}A'{,}B'\)三点坐标分别为:
\(O'\left( \frac{2ay^2}{y^2+\left( a-x\right)^2}\ {,}\ \frac{2a\left( ay-xy\right)}{y^2+\left( a-x\right)^2}\right)\ {,}\ A'\left( a-\frac{2ay^2}{y^2+x^2}\ {,}\ \frac{2axy}{y^2+x^2}\right)\ {,}\ B'\left( x\ {,}\ -y\right)\)
要使得\(O'{,}A'{,}B'\)三点共线,当且仅当 \(\triangle O'A'B'\)面积为 0 ,则有
\(\begin{vmatrix}
\frac{2ay^2}{y^2+\left( a-x\right)^2}&\frac{2a\left( ay-xy\right)}{y^2+\left( a-x\right)^2}&1\\
a-\frac{2ay^2}{y^2+x^2}&\frac{2axy}{y^2+x^2}&1\\
x&-y&1
\end{vmatrix}=0\)
展开合并后得到四次曲线方程
\(5x^4-3y^4+2x^2y^2-2axy^2-10ax^3+5a^2x^2-3a^2y^2=0\)
曲线过\(O\left( 0\ {,}\ 0\ \right)\ {,}\ A\left( a\ {,}\ 0\right)\)两点,\(a=1\)时的图像(B点轨迹)为
(图像由 geogebra 所绘, https://www.geogebra.org/) |