数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 1395|回复: 2

施承忠大筛法素数公式

[复制链接]
发表于 2024-5-21 14:33 | 显示全部楼层 |阅读模式
施承忠大筛法素数公式
转引自《施承忠大筛法三大公式》
http://www.mathchina.com/bbs/for ... hlight=%C9%B8%B7%A8

这里p1,p2,p3,...,pk是所有不大于pk的素数.π(x)表不大于x的素数个数.K(pk)表≈1+p1+p2+p3+...+pk.
我们有:      
π(pk^2)≈1+p1+p2+p3+...+pk=K(pk)      (1)

证:
因为2(1+2+3+...+n)-n=n^2
这时任意一项k,1≤k≤n,都代表k个自然数。
我们将这k个自然数作一个筛法变换。这里2个1,其中一个代表自然数1,另一个代表最小偶数2,
因为2只有一个因子是素数,所以保留下来。其它,如果k是合数就筛掉,因为它代表k个合数。
如果k是素数,其中2个中一个是p个素数,则保留下来。另一个是p个具有最小因子p的合数被筛掉。
因为这时我们总是满足所有素数项都是满的,而实际上并不是。
因为一个匀值的自然数列换成一个不匀值的筛法数列,就会有一些差距,所以我们称之为大筛法。
虽然它不是绝对正确的,但是它随着n 的增大而愈来愈趋向确。
证毕。
 楼主| 发表于 2024-5-21 14:35 | 显示全部楼层
本帖最后由 yangchuanju 于 2024-5-21 14:37 编辑

素数号        素数p        素数和加1        p^2        π(p^2)        素数和加1/π(p^2)
1        2        3         4         2        1.5
2        3        6         9         4        1.5
3        5        11         25         9        1.222222222
4        7        18         49         15        1.2
5        11        29         121         30        0.966666667
6        13        42         169         39        1.076923077
7        17        59         289         61        0.967213115
8        19        78         361         72        1.083333333
9        23        101         529         99        1.02020202
10        29        130         841         146        0.890410959
11        31        161         961         162        0.99382716
12        37        198         1369         219        0.904109589
13        41        239         1681         263        0.908745247
14        43        282         1849         283        0.996466431
15        47        329         2209         304        1.082236842
16        53        382         2809         409        0.93398533
17        59        441         3481         487        0.905544148
18        61        502         3721         519        0.967244701
19        67        569         4489         609        0.934318555
20        71        640         5041         675        0.948148148
21        73        713         5329         705        1.011347518
22        79        792         6241         811        0.976572133
23        83        875         6889         886        0.98758465
24        89        964         7921         1000        0.964
25        97        1061         9409         1163        0.912295787
26        101        1162         10201         1252        0.928115016
168        997        76128         994009         78060        0.975249808
1229        9973        5736397         99460729         5732067        1.000755399
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-5-21 15:19 | 显示全部楼层
【转载】在 (pk^2)^1±Δ中一定存在K(pk)个素数
http://www.mathchina.com/bbs/for ... 30&highlight=pk

在(pk^2)^1±Δ中一定存在K(pk)个素数
                          文/施承忠
这里K(pk)=p1+p2+p3+...+pk,其中p1,p2,p3,...,pk是所有不大于pk的所有素数.
从下面的数据可以看出,只要存在一个素数pk就一定存在K(pk)个素数,这是从施承忠的大筛法定理中推出的.而这K(pk)个素数远远大于k.
比如说p3=5,那么K(pk)+1=1+2+3+5=11,11>3.5^2=25,25^1.066828107=31,31=p11.
这是对旧素数定理极大的挑战.虽然这是一种极初等的方法,但是它对于素数问题的解决且是完美无缺的.一切高等的数学都是从初等数学中提升的.如果我们连初等的都做不好,怎么能做好高等的呢?

【序号】【素数】【π(x)=x^s=K(pk)+1】【(pk^2)^s=K(pk)+1】【(pk^2)^1±Δ=p_K(pk)】
0【1】π(2)=2^0=1
1【2】π(5)=5^0.682606194=3【4^0.792481250=3【4^1.160964047=5
2【3】π(13)=13^0.698555495=6【9^0.815464876=6【9^1.167358760=13
3【5】π(31)=31^0.698283112=11【25^0.744948051=11【25^1.066828107=31
4【7】π(61)=61^0.703103975=18【49^0.742678627=18【49^1.046285632=61
5【11】π(109)=109^0.717767241=29【121^0.702135716=29【121^0.978222013=109
6【13】π(181)=181^0.718990430=42【169^0.728604954=42【169^1.013372256=181
7【17】π(277)=277^0.725022182=59【289^0.719595905=59【289^0.992515708=277
8【19】π(397)=397^0.728067382=78【361^0.739819853=78【361^1.016142009=397
9【23】π(547)=547^0.732041874=101【529^0.735947860=101【529^1.005335741=547
10【29】π(733)=733^0.737824306=130【841^0.722766085=130【841^0.979591048=733
11【31】π(947)=947^0.741453757=161【961^0.739869437=161【961^0.997863225=947
12【37】π(1213)=1213^0.744736983=198【1369^0.732260765=198【1369^0.983247484=1213
13【41】π(1499)=1499^0.748912613=239【1681^0.737357920=239【1681^0.984571373=1499
14【43】π(1831)=1831^0.750990854=282【1849^0.750014210=282【1849^0.998699525=1831
15【47】π(2207)=2207^0.752794467=329【2209^0.752705915=329【2209^0.999882368=2207
16【53】π(2633)=2633^0.754889770=382【2809^0.748738472=382【2809^0.991851396=2633
17【59】π(3083)=3083^0.757941718=441【3481^0.746657137=441【3481^0.985111545=3083
18【61】π(3583)=3583^0.759852610=502【3721^0.756359879=502【3721^0.995403409=3583
19【67】π(4133)=4133^0.761866720=569【4489^0.754380998=569【4489^0.990174498=4133
20【71】π(4751)=4751^0.763215676=640【5041^0.757911497=640【5041^0.993050222=4751
21【73】π(5407)=5407^0.764297582=713【5329^0.765591833=713【5329^1.001693386=5407
22【79】π(6073)=6073^0.766168702=792【6241^0.763776295=792【6241^0.996877442=6073
23【83】π(6793)=6793^0.767735059=875【6889^0.766515981=875【6889^0.998412109=6793
24【89】π(7589)=7589^0.769055438=964【7921^0.765387383=964【7921^0.995230441=7589
25【97】π(8513)=8513^0.769885945=1061【9409^0.761465279=1061【9409^0.989062448=8513
26【101】π(9397)=9397^0.771511311=1162【10201^0.764649364=10201【10201^0.991105837=9397
27【103】π(10313)=10313^0.772936190=1265【10609^0.770917186=1265【10609^0.996947236=10313
28【107】π(11353)=11353^0.773679041=1372【11449^0.772981962=1372【11449^0.999099007=11353
29【109】π(12409)=12409^0.774489232=1481【11881^0.778078390=1481【11881^1.004634226=12409
30【113】π(13451)=13451^0.775654803=1594【12769^0.779923516=1594【12769^1.005503366=13451
31【127】π(14713)=14713^0.776394632=1721【16129^0.769031074=1721【16129^0.990515701=14713
32【131】π(15889)=15889^0.777806682=1852【17161^0.771663267=1852【17161^0.992101620=15889
33【137】π(17299)=17299^0.778343189=1989【18769^0.771891943=1989【18769^0.991711565=17299
34【139】π(18593)=18593^0.779503211=2128【19321^0.776469584=2128【19321^0.996108255=18593
35【149】π(20129)=20129^0.780088692=2277【22201^0.772451740=2277【22201^0.990210149=20129
36【151】π(21613)=21613^0.780962218=2428【22801^0.776797727=2428【22801^0.994667488=21613
37【157】π(23167)=23167^0.781801223=2585【24649^0.777007397=2585【24649^0.993868229=23167
38【163】π(24851)=24851^0.782422679=2748【26569^0.777288671=2748【26569^0.993438318=24851
39【167】π(26561)=26561^0.783102882=2915【27889^0.779370334=2915【27889^0.995233643=26561
40【173】π(28387)=28387^0.783647798=3088【29929^0.779625872=3088【29929^0.994867686=28387
41【179】π(30203)=30203^0.784399520=3267【32041^0.779933064=3267【32041^0.994305891=30203
42【181】π(32141)=32141^0.784894751=3448【32761^0.783452369=3448【32761^0.998162323=32141
43【191】π(34019)=34019^0.785790128=3639【36481^0.780563341=3639【36481^0.993348367=34019
44【193】π(36073)=36073^0.786324815=3832【37249^0.783928166=3832【37249^0.996952087=36073
45【197】π(38177)=38177^0.786851423=4029【38809^0.785628750=4029【38809^0.998446119=38177
46【199】π(40253)=40253^0.787468805=4228【39601^0.788683499=4228【39601^1.001542530=40253
47【211】π(42451)=42451^0.788110084=4439【44521^0.784604542=4439【44521^0.995551963=42451
48【223】π(44867)=44867^0.788613459=4662【49729^0.781110733=4662【49729^0.990486181=44867
49【227】π(47417)=47417^0.788980336=4889【51529^0.782932841=4889【51529^0.992335050=47417
50【229】π(49831)=49831^0.789590334=5118【52441^0.785881115=5118【52441^0.995302350=49831
51【233】π(52363)=52363^0.790085945=5351【54289^0.787468187=5351【54289^0.996686742=52363
52【239】π(54983)=54983^0.790555109=5590【57121^0.787801697=5590【57121^0.996517115=54983
53【241】π(57557)=57557^0.791106175=5831【58081^0.790452581=5831【58081^0.999173822=57557
54【251】π(60259)=60259^0.791637879=6082【63001^0.788450192=6082【63001^0.995973302=60259
55【257】π(63277)=63277^0.791882116=6339【66049^0.788822875=6339【66049^0.996136746=63277
56【263】π(66109)=66109^0.792420959=6602【69169^0.789203500=6602【69169^0.995939820=66109
57【269】π(69193)=69193^0.792762535=6871【72361^0.789590770=6871【72361^0.995999098=69193
58【271】π(72161)=72161^0.793244103=7142【73441^0.791999278=7142【73441^0.998430716=72161
59【277】π(75289)=75289^0.793635111=7419【76729^0.792298347=7419【76729^0.998315644=75289
60【281】π(78479)=78479^0.794011538=7700【78961^0.793580408=7700【78961^0.999458146=78479
61【283】π(81629)=81629^0.794440082=7983【80089^0.795780185=7983【80089^1.001686853=81629
62【293】π(84979)=84979^0.794800732=8276【85849^0.794088107=8276【85849^0.999103392=84979
63【307】π(88607)=88607^0.795081259=8583【94249^0.790796192=8583【94249^0.994610529=88607
64【311】π(92083)=92083^0.795518606=8894【96721^0.792113261=8894【96721^0.995719340=92083
65【313】π(95507)=95507^0.796002032=9207【97969^0.794239173=9207【97969^0.997785358=95507
66【317】π(99191)=99191^0.796325722=9524【100489^0.795426851=9524【100489^0.998871227=99191
67【331】π(103007)=103007^0.796681188=9855【109561^0.792446277=9855【109561^0.994684310=103007
68【337】π(106937)=106937^0.797008829=10192【113569^0.792888906=10192【113569^0.994830769=106937
69【347】π(111043)=111043^0.797305803=10539【120409^0.791786940=10539【120409^0.993078189=111043
70【349】π(115183)=115183^0.797596984=10888【121801^0.793791832=10888【121801^0.995229230=115183
71【353】π(119297)=119297^0.797931960=11241【124609^0.794969221=11241【124609^0.996286977=119297
72【359】π(123439)=123439^0.798290482=11600【128881^0.795363551=11600【128881^0.996333501=123439
73【367】π(127739)=127739^0.798614753=11967【134689^0.795032411=11967【134689^0.995514305=127739
74【373】π(132169)=132169^0.798908732=12340【139129^0.795446807=12340【139129^0.995666682=132169
75【379】π(136537)=136537^0.799270275=12719【143641^0.795856386=12719【143641^0.995728742=136537
76【383】π(141073)=141073^0.799569365=13102【146689^0.796945561=13102【146689^0.996718478=141073
77【389】π(145799)=145799^0.799814186=13491【151321^0.797321334=13491【151321^0.996883210=145799
78【397】π(150431)=150431^0.800148693=13888【157609^0.797032253=13888【157609^0.996105174=150431
79【401】π(155201)=155201^0.800440429=14289【160801^0.798073645=14289【160801^0.997043147=155201
80【409】π(160159)=160159^0.800695000=14698【167281^0.797798570=14698【167281^0.996382605=160159
81【419】π(165317)=165317^0.800922059=15117【175561^0.796934494=15117【175561^0.995021281=165317
82【421】π(170441)=170441^0.801172851=15538【177241^0.798579376=15538【177241^0.996762901=170441
83【431】π(175757)=175757^0.801400903=15969【185761^0.797744161=15969【185761^0.995437062=175757
84【433】π(180773)=180773^0.801748092=16402【187489^0.799339305=16402【187489^0.996995581=180773
85【439】π(186037)=186037^0.802028316=16841【192721^0.799701915=16841【192721^0.997099353=186037
86【443】π(191497)=191497^0.802255644=17284【196249^0.800642059=17284【196249^0.997988689=191497
87【449】π(196991)=196991^0.802497920=17733【201601^0.800978051=17733【201601^0.998106077=196991
88【457】π(202577)=202577^0.802743869=18190【208849^0.800745658=18190【208849^0.997510747=202577
89【461】π(208207)=208207^0.802990669=18651【212521^0.801648203=18651【212521^0.998328167=208207
90【463】π(213847)=213847^0.803239909=19114【214369^0.803080378=19114【214369^0.999801390=213847
91【467】π(219649)=219649^0.803454215=19581【218089^0.803920077=19581【218089^1.000579834=219649
92【479】π(225479)=225479^0.803707389=20060【229441^0.802573205=20060【229441^0.998588809=225479
93【487】π(231349)=231349^0.803977116=20547【237169^0.802363152=20547【237169^0.997992524=231349
94【491】π(237767)=237767^0.804107620=21038【241081^0.803209502=21038【241081^0.998883087=237767
95【499】π(243863)=243863^0.804356384=21537【249001^0.803006621=21537【249001^0.998321934=243863
96【503】π(249947)=249947^0.804619108=22040【253009^0.803831629=22040【253009^0.999021301=249947
97【509】π(256307)=256307^0.804829001=22549【259081^0.804133943=22549【259081^0.999136390=256307
98【521】π(263047)=263047^0.804985377=23070【271441^0.802964335=23070【271441^0.997489343=263047
99【523】π(269333)=269333^0.805257825=23593【273529^0.804263463=23593【273529^0.998765163=269333
100【541】π(276113)=276113^0.805469463=24134【292681^0.801740394=24134【292681^0.995370316=276113
101【547】π(282977)=282977^0.805679247=24681【299209^0.802115245=24681【299209^0.995576401=282977
102【557】π(290119)=290119^0.805856943=25238【310249^0.801581770=25238【310249^0.994694873=290119
103【563】π(297403)=297403^0.806021959=25801【316969^0.801967473=25801【316969^0.994969757=297403
104【569】π(304537)=304537^0.806236382=26370【323761^0.802346638=26370【323761^0.995175429=304537
105【571】π(311827)=311827^0.806422150=26941【326041^0.803590597=26941【326041^0.996488745=311827
106【577】π(318907)=318907^0.806665673=27518【332929^0.803935925=27518【332929^0.996616011=318907
107【587】π(326149)=326149^0.806901483=28105【344569^0.803424540=28105【344569^0.995690994=326149
108【593】π(333701)=333701^0.807090908=28698【351649^0.803779969=28698【351649^0.995897686=333701
109【599】π(341357)=341357^0.807275362=29297【358801^0.804129764=29297【358801^0.996103438=341357
110【601】π(349039)=349039^0.807458761=29898【361201^0.805297645=29898【361201^0.997323558=349039
111【607】π(356737)=356737^0.807653069=30505【368449^0.805617499=30505【368449^0.997479648=356737
112【613】π(364687)=364687^0.807816626=31118【375769^0.805932804=31118【375769^0.997668008=364687
113【617】π(372817)=372817^0.807958713=31735【380689^0.806644883=31735【380689^0.998373890=372817
114【619】π(380753)=380753^0.808137648=32354【383161^0.807741356=32354【383161^0.999509622=380753
115【631】π(389003)=389003^0.808292400=32985【398161^0.806833770=32985【398161^0.998195417=389003
116【641】π(397037)=397037^0.808503636=33626【410881^0.806359844=33626【410881^0.997348444=397037
117【643】π(405577)=405577^0.808638042=34269【413449^0.807436028=34269【413449^0.998513532=405577
118【647】π(414031)=414031^0.808794357=34916【418609^0.808107290=34916【418609^0.999150504=414031
119【653】π(422339)=422339^0.808984313=35569【426409^0.808385794=35569【426409^0.999260159=422339
120【659】π(430883)=430883^0.809150440=36228【434281^0.808660816=36228【434281^0.999394890=430883
121【661】π(439367)=439367^0.809327759=36889【436921^0.809675646=36889【436921^1.000429848=439367
122【673】π(448057)=448057^0.809499014=37562【452929^0.808826792=37562【452929^0.999169583=448057
123【677】π(456991)=456991^0.809643339=38239【458329^0.809461752=38239【458329^0.999775719=456991
124【683】π(466069)=466069^0.809779564=38922【466489^0.809723684=38922【466489^0.999930993=466069
125【691】π(474923)=474923^0.809960000=39613【477481^0.809627272=39613【477481^0.999589204=474923
126【701】π(483929)=483929^0.810138460=40314【491401^0.809190485=40314【491401^0.998830807=483929
127【709】π(493369)=493369^0.810273698=41023【502681^0.809119588=41023【502681^0.998575654=493369
128【719】π(502717)=502717^0.810438698=41742【516961^0.808717493=41742【516961^0.997876205=502717
129【727】π(512443)=512443^0.810570810=42469【528529^0.808669645=42469【528529^0.997654535=512443
130【733】π(521791)=521791^0.810757607=43202【537289^0.808959097=43202【537289^0.997781692=521791
131【739】π(531551)=531551^0.810904461=43941【546121^0.809244581=43941【546121^0.997953051=531551
132【743】π(541523)=541523^0.811032916=44684【552049^0.809851996=44684【552049^0.998543930=541523
133【751】π(551461)=551461^0.811178006=45435【564001^0.809800711=45435【564001^0.998302104=551461
134【757】π(561461)=561461^0.811325008=46192【573049^0.810074926=46192【573049^0.998459210=561461
135【761】π(571709)=571709^0.811450637=46953【579121^0.810662910=46953【579121^0.999029236=571709
136【769】π(581743)=581743^0.811610897=47722【591361^0.810609503=47722【591361^0.998766165=581743
137【773】π(592061)=592061^0.811746274=48495【597529^0.811185207=48495【597529^0.999308814=592061
138【787】π(602377)=602377^0.811902281=49282【619369^0.810208782=49282【619369^0.997914159=602377
139【797】π(612947)=612947^0.812046374=50079【635209^0.809878193=50079【635209^0.997330011=612947
140【809】π(623729)=623729^0.812186140=50888【654481^0.809267314=50888【654481^0.996406211=623729
141【811】π(634741)=634741^0.812305680=51699【657721^0.810149252=51699【657721^0.997345299=634741
142【821】π(645941)=645941^0.812421349=52520【674041^0.809843670=52520【674041^0.996827164=645941
143【823】π(656993)=656993^0.812553172=53343【677329^0.810708256=53343【677329^0.997729483=656993
144【827】π(667999)=667999^0.812693739=54170【683929^0.811268191=54170【683929^0.998245897=667999
145【829】π(679229)=679229^0.812815776=54999【687241^0.812106600=54999【687241^0.999127506=679229
146【839】π(690397)=690397^0.812955892=55838【703921^0.811784597=55838【703921^0.998559214=690397
147【853】π(702007)=702007^0.813075008=56691【727609^0.810917226=56691【727609^0.997346146=702007
148【857】π(713191)=713191^0.813234721=57548【734449^0.811466307=57548【734449^0.997825456=713191
149【859】π(724813)=724813^0.813358549=58407【737881^0.812282891=58407【737881^0.998677509=724813
150【863】π(736433)=736433^0.813486711=59270【744769^0.812809498=59270【744769^0.999167518=736433
151【877】π(748777)=748777^0.813572895=60147【769129^0.811963070=60147【769129^0.998021289=748777
152【881】π(760607)=760607^0.813704928=61028【776161^0.812490371=61028【776161^0.998507373=760607
153【883】π(772367)=772367^0.813843629=61911【779689^0.813277619=61911【779689^0.999304522=772367
154【887】π(784411)=784411^0.813963909=62798【786769^0.813783942=62798【786769^0.999778901=784411
155【907】π(796591)=796591^0.814096235=63705【822649^0.812172316=63705【822649^0.997636741=796591
156【911】π(809147)=809147^0.814204085=64616【829921^0.812689677=64616【829921^0.998140014=809147
157【919】π(821573)=821573^0.814329915=65535【844561^0.812683172=65535【844561^0.997977794=821573
158【929】π(833933)=833933^0.814470469=66464【863041^0.812426034=66464【863041^0.997489860=833933
159【937】π(847037)=847037^0.814565765=67401【877969^0.812430933=67401【877969^0.997379178=847037
160【941】π(859981)=859981^0.814676343=68342【885481^0.812937946=68342【885481^0.997866149=859981
161【947】π(872623)=872623^0.814813253=69289【896809^0.813188020=69289【896809^0.998005392=872623
162【953】π(885791)=885791^0.814919609=70242【908209^0.813435000=70242【908209^0.998178214=885791
163【967】π(898897)=898897^0.815043887=71209【935089^0.812703801=71209【935089^0.997128883=898897
164【971】π(912167)=912167^0.815160447=72180【942841^0.813200587=72180【942841^0.997595740=912167
165【977】π(925577)=925577^0.815273138=73157【954529^0.813449401=73157【954529^0.997763035=925577
166【983】π(939299)=939299^0.815371255=74140【966289^0.813695152=74140【966289^0.997944368=939299
167【991】π(952981)=952981^0.815479256=75131【982081^0.813701486=75131【982081^0.997819969=952981
168【997】π(966893)=966893^0.815578244=76128【994009^0.813944759=76128【994009^0.997997145=966893
169【1009】π(981017)=981017^0.815675331=77137【1018081^0.813488650=77137【1018081^0.997319177=981017
170【1013】π(995219)=995219^0.815771146=78150【1026169^0.813966197=78150【1026169^0.997787431=995219

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-21 18:19 , Processed in 0.109482 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表