数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 1140|回复: 1

求证:\(2^k-1=mt\)

[复制链接]
发表于 2024-8-10 20:51 | 显示全部楼层 |阅读模式
已知:\(a^2c-a^2c^2=5a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a\ne0\),\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c-a^2c^2=11a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a\ne0\),\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c-a^2c^2=5a^3\),\(a^2c-a^2c^2=11a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a\ne0\),\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
(a^2*61-a^2*61^2)/11=a^3
已知:\(a^2c^2-a^2c=5a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=11a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=5a^3\),\(a^2c^2-a^2c=11a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=37a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=37a^3\),\(a^2c^2-a^2c=109a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=109a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=37a^3\),\(a^2c^2-a^2c=73a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
 楼主| 发表于 2024-8-10 20:55 | 显示全部楼层
本帖最后由 太阳 于 2024-8-10 20:57 编辑

已知:\(a^2c-a^2c^2=5a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a\ne0\),\(m>1\),\(t>1\),\(u>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c-a^2c^2=11a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a\ne0\),\(m>1\),\(t>1\),\(u>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c-a^2c^2=5a^3\),\(a^2c-a^2c^2=11a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a\ne0\),\(m>1\),\(t>1\),\(u>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=5a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),\(u>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=11a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),\(u>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=5a^3\),\(a^2c^2-a^2c=11a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),\(u>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=37a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),\(u>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=37a^3\),\(a^2c^2-a^2c=109a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),\(u>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=109a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),\(u>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
已知:\(a^2c^2-a^2c=37a^3\),\(a^2c^2-a^2c=73a^3\),\(c=2^k-1\),\(k=9u+1\)
整数\(a>0\),\(m>1\),\(t>1\),\(u>1\),奇数\(c>0\),素数\(k>0\)
求证:\(2^k-1=mt\)
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-21 05:55 , Processed in 0.078267 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表