|
本帖最后由 春风晚霞 于 2024-8-29 15:55 编辑
elim 发表于 2024-8-29 07:40
\(N_{\infty}=\displaystyle\lim_{n\to\infty}\mathbb{N}\cap[n+1,\infty)=\lim_{n\to\infty}[n,\infty)=\v ...
elim你的1、【\(N_{\infty}=\displaystyle\lim_{n\to\infty}\mathbb{N}\cap[n+1,\infty)=\lim_{n\to\infty}[n,\infty)=\varnothing\)】是\(\color{red}{错误的}
\)\(\because\quad\displaystyle\lim_{k→∞}\{k+1,k+2,…,\}=\{∞+1,∞+2,…\}\)\(\nsubseteq\{\displaystyle\lim_{k→∞}1,\displaystyle\lim_{k→∞}2,…,\}\)\(=\displaystyle\lim_{k→∞}\mathbb{N}^+\)即\(\displaystyle\lim_{k→∞} A_k\nsubseteq(\displaystyle\lim_{k→∞}mathbb{N}且[n+1,∞)\)\(\therefore\quad N_∞≠\phi\)
2、你的【\(\displaystyle\lim_{m\to\infty}(m+j)=\alpha+j\in\mathbb{N}\implies \alpha+j\not\in A_{\alpha+j}\),
仍有\(N_{\infty}=\phi\)】\(\color{red}{也是错误的}\)!
\(\because\quad\displaystyle\lim_{m→∞} A_m=A_α\)是\(\displaystyle\bigcap_{m=1}^∞ A_m\)的极限集,\(A_{α+j}\)不在极限集定义之中,所以α+j(j=1,2,3,……)只能是\(A_α\)的元素。所以\(N_∞=N_α≠\phi\)!所以
(1)即便是【 归纳目测极限集】,也比elim的“臭便”之法靠谱!毕竟归纳目测皆为用分析方法寻找证明途径的常规方法。而”臭便“之法除了elim抽风抬杠,别无任何用处!
(2)elim读不懂现行教科书中 极限集的定义,把运用周民强定义1.8称为目测。很可惜现行教科书没有一本介绍elim的“臭便”之法?
(3) elim栽脏老夫用【归纳目测法得出\(\displaystyle\lim_{n→∞}[n,∞)≠\phi\)。事实上老夫根据周民强定义1.8证得\(\displaystyle\lim_{k→∞}[n,∞)=[∞,∞)=\phi\)!
(4) elim根本证明不了\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……,\}=\phi\) 这个所谓的”集论事实”。
春风晚霞对现教科书字斟句配【死磕周民强】何罪之有?elim为了打压春风晚霞篡改Weierstrass极限理论;篡改Cantor实数定义;篡改Peano axioms:篡改Cantor集合论;污蔑周民强《实变函数论》1.8、1.9所介绍的极限集定义没有讲清楚。污蔑现行的数学论证范式为“党八股数学”;……elim你太看得起老夫了。老夫如果真的“错了”需得你如此大动干戈吗?所以你越是猖狂,越说明老夫的坚持越是对的! |
|