数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 1014|回复: 4

11等式,求证:\(c=p\)

[复制链接]
发表于 2024-8-28 19:40 | 显示全部楼层 |阅读模式
已知:\(4a+c^4=1\),\(9a+c^4=1\),\(16a+c^4=1\),\(36a+c^4=1\)
\(64a+c^4=1\),\(81a+c^4=1\),\(144a+c^4=1\),\(324a+c^4=1\)
\(576a+c^4=1\),\(1296a+c^4=1\),\(5184a+c^4=1\)
整数\(a\ne0\),奇数\(c>0\),素数\(p>0\)
求证:\(c=p\)
已知:\(4a+c^4=1\),\(9a+c^4=1\),\(16a+c^4=1\),\(36a+c^4=1\)
\(64a+c^4=1\),\(81a+c^4=1\),\(144a+c^4=1\),\(324a+c^4=1\)
\(576a+c^4=1\),\(1296a+c^4=1\),\(5184a+c^4=1\),\(m^2t+c^4\ne1\),\(72>m>3\)
整数\(a\ne0\),\(t\ne0\),奇数\(c>0\),素数\(m>3\),\(p>0\)
求证:\(c=p\)
已知:\(4a+c^4=1\),\(9a+c^4=1\),\(16a+c^4=1\),\(36a+c^4=1\)
\(64a+c^4=1\),\(81a+c^4=1\),\(144a+c^4=1\),\(324a+c^4=1\)
\(576a+c^4=1\),\(1296a+c^4=1\),\(5184a+c^4=1\),\(m^2t+c^4\ne1\),\(72>m>4\)
\(m\ne6\),\(m\ne8\),\(m\ne9\),\(m\ne12\),\(m\ne18\),\(m\ne24\),\(m\ne36\)
整数\(a\ne0\),\(m>4\),\(t\ne0\),奇数\(c>0\),素数\(p>0\)
求证:\(c=p\)
命题附加条件,\(c\ne3k\),\(c\ne5y\),整数\(k>0\),\(y>0\)
 楼主| 发表于 2024-8-28 19:54 | 显示全部楼层
已知:\(4a+1=c^4\),\(9a+1=c^4\),\(16a+1=c^4\),\(36a+1=c^4\)
\(64a+1=c^4\),\(81a+1=c^4\),\(144a+1=c^4\),\(324a+1=c^4\)
\(576a+1=c^4\),\(1296a+1=c^4\),\(5184a+1=c^4\)
整数\(a>0\),奇数\(c>0\),素数\(p>0\)
求证:\(c=p\)
已知:\(4a+1=c^4\),\(9a+1=c^4\),\(16a+1=c^4\),\(36a+1=c^4\)
\(64a+1=c^4\),\(81a+1=c^4\),\(144a+1=c^4\),\(324a+1=c^4\)
\(576a+1=c^4\),\(1296a+1=c^4\),\(5184a+1=c^4\),\(m^2t+1\ne c^4\),\(72>m>3\)
整数\(a>0\),\(t>0\),奇数\(c>0\),素数\(m>3\),\(p>0\)
求证:\(c=p\)
已知:\(4a+1=c^4\),\(9a+1=c^4\),\(16a+1=c^4\),\(36a+1=c^4\)
\(64a+1=c^4\),\(81a+1=c^4\),\(144a+1=c^4\),\(324a+1=c^4\)
\(576a+1=c^4\),\(1296a+1=c^4\),\(5184a+1=c^4\),\(m^2t+1\ne c^4\),\(72>m>4\)
\(m\ne6\),\(m\ne8\),\(m\ne9\),\(m\ne12\),\(m\ne18\),\(m\ne24\),\(m\ne36\)
整数\(a>0\),\(m>4\),\(t>0\),奇数\(c>0\),素数\(p>0\)
求证:\(c=p\)
命题附加条件,\(c\ne3k\),\(c\ne5y\),整数\(k>0\),\(y>0\)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-8-28 22:21 | 显示全部楼层
已知:\(4a+1=c^4\),\(9a+1=c^4\),\(16a+1=c^4\),\(36a+1=c^4\)
\(64a+1=c^4\),\(81a+1=c^4\),\(144a+1=c^4\),\(324a+1=c^4\)
\(576a+1=c^4\),\(1296a+1=c^4\),\(5184a+1=c^4\),\(m^2t+1\ne c^4\)
\(73>m>1\),\(m\ne2\),\(m\ne3\),\(m\ne4\),\(m\ne6\),\(m\ne8\)
\(m\ne9\),\(m\ne12\),\(m\ne18\),\(m\ne24\),\(m\ne36\),\(m\ne72\)
整数\(a>0\),\(m>1\),\(t>0\),奇数\(c>0\),素数\(p>0\)
求证:\(c=p\)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-8-28 22:24 | 显示全部楼层
已知:\(64a+1=c^4\),\(81a+1=c^4\),\(144a+1=c^4\),整数\(a>0\),奇数\(c>0\),素数\(p>0\)
求证:\(c=p\)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-8-28 22:33 | 显示全部楼层

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-21 05:57 , Processed in 0.096415 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表