数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\color{Purple}{\textbf{孬种的无穷大妄想}}\)

[复制链接]
 楼主| 发表于 2024-9-24 09:23 | 显示全部楼层
孬种认为单调严格增序列\(\{n\}\)的极限 \(\mu = \displaystyle\lim_{n\to\infty}n\in\mathbb{N}\).
因为所论极限值\(\mu\)不小于序列的任何一项,所以孬种
的认定导致 \(\mu=\max\mathbb{N}\). 这与\(\mathbb{N}\)没有最大数矛盾。
设 \(\mathbb{N}^*\)为\(\mathbb{N}\)的含超限数\(\displaystyle\lim_{n\to\infty}n\)的扩充序集。
令\(S=\mathbb{N}^*-\mathbb{N},\;s\in S\) 则对任意 \(j\in\mathbb{N},\,s-j\in S\)
否则 \(s=(s-j)+j\in\mathbb{N}. \;\; \mathbb{N}^*\)的非空子集\(S\)没有最小元,
故 \(\mathbb{N}^*\) 不是良序集。超限归纳法在\(\mathbb{N}^*\)上不成立。
这样的东西不能扩充成\(\mathbb{Z},\,\mathbb{Q},\mathbb{R}\) 因而无法取代
\(\mathbb{N}\).

另外\(\forall \alpha\in\mathbb{N}^*,\;\alpha\not\in A_\alpha\)因此\(\forall \alpha\in\mathbb{N}^*\,(\alpha\not\in\displaystyle\bigcap_{\eta\in\mathbb{N}^*}A_\eta=N_\infty)\)
仍有 \(\displaystyle\bigcap_{\eta\in\mathbb{N}^*}A_\eta = \phi\)

无论孬种咋样扯,它总是不懂集论反数学的蠢东西。
回复 支持 反对

使用道具 举报

发表于 2024-9-24 09:25 | 显示全部楼层
elim 发表于 2024-9-24 09:23
孬种认为单调严格增序列\(\{n\}\)的极限 \(\mu = \displaystyle\lim_{n\to\infty}n\in\mathbb{N}\).
因为 ...


elim野种,你的【逐点排查】遍历了\(\mathbb{N}^+\)所有数了吗?根据你的单减集列\(\{A_n=\{m∈N:m>n\}\}\)的定义,\(A_k=\{k+1,k+2,k+3,…\}\),所以你【逐点排查】法泵理【对任意\(m\in\mathbb{N}\), 只要\(n\ge m\) 就有 \(m\not\in A_n\) 所以
\(\quad\forall m\in\mathbb{N}\,(m\not\in\displaystyle\lim_{n\to\infty}A_n=N_{\infty})\)
\(\quad\)故\(N_{\infty}\)不含任何自然数,即\(N_{\infty}=\varnothing\)】\(\color{red}{错就错在m并未遍历\mathbb{N}^+!}\)根据数的三歧性(也叫数的三分律):你只证明了①、m<n;②、m=n这两种情,而对③、m>n这种情形根本就未论及,事实上m>n时,\(m∈A_n\)才是\(A_∞≠\phi\)的关键,如\(\forall k∈\mathbb{N}\)固然有当n≤k时\(n\notin A_k\),但当n>k时,如n=k+1;n=k+2;n=k+3;……却有\(A_k=\{k+1,k+2,k+3,…\}\),所以你说你的【逐点排查】遍历了\(\mathbb{N}^+\)的所有自然数,欺骗你自己个也许有可能。欺骗论坛中众多网友那是根本不可能的。所以你的【逐点排查】最多也是证明了\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\),根本就没有证明到\(\displaystyle\lim_{n→∞} A_n=\phi\)即你根本就没有证明到\(N_∞=\phi\)!对于单减集列极限集,以周民强《实变函数论》为代表的现行教科书都一致认为\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n\);所以对elim所给集列\(\{A_n=\{m∈N:m>n\}\}\)有\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……\}≠\phi\)!现行教科书求单减极列\(\{A_n\}\)的极限集都是根据极限集的定义直按计算\(\displaystyle\lim_{n→∞} A_n\)的。要想用\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\)论证\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)就必须弄清楚相对于\(A_n、A_n^c\)的全集\(\Omega\)是什么?因为对任何集列\(\{A_n\}\)、任何时候都有\(\Omega=A_n\cup A_n^c\),对\(\{A_n=\{m∈N:m>n\}\}\)有\(\Omega=A_1\cup A_1^c=\)\(A_2\cup A_2^c=\)……\(\displaystyle\lim_{n→∞} A_n\cup\displaystyle\lim_{n→∞} A_n^c=\)\(\displaystyle\bigcup_{n=1}^∞ A_n^c\)\(\cup\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\)。
\(\Omega=\displaystyle\bigcup_{n=1}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),于是\(\forall k∈\mathbb{N}\)有\(A_k=\displaystyle\bigcup_{n={k+1}}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),根据Cantor超穷数和方嘉琳《集合论》超限数理论,我们立得\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\)\(\displaystyle\bigcap_{n=1}^ω\{n+1,n+2,n+3,…\}\)=\(\{ω+1,ω+2,ω+3,…\}\),所以\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\)
至于戏证\(\mathbb{N}=\phi\),那是对【逐点排查】生吞周氏《实变函数论》P9页例5的嘲讽。由\(\forall n∈N,恒有n∈[n,∞)\)得\(\mathbb{N}\subseteq [n,∞)\)有什么错?而\(\displaystyle\lim_{n→∞}\mathbb{N}\subseteq\displaystyle\lim_{n→∞} [n,∞)=\phi\)这不是你证明\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\phi\)的贯用手笔吗?elim野种,\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\),\(\Omega-\mathbb{N}=\{ω+1,ω+2,…,ω+\nu\}\)还等于空集吗?野种真是野啊!
回复 支持 反对

使用道具 举报

发表于 2024-9-24 11:46 | 显示全部楼层
elim 发表于 2024-9-24 10:40
孬种认为单调严格增序列\(\{n\}\)的极限 \(\mu = \displaystyle\lim_{n\to\infty}n\in\mathbb{N}\).
因为 ...


elim野种,你的【逐点排查】遍历了\(\mathbb{N}^+\)所有数了吗?根据你的单减集列\(\{A_n=\{m∈N:m>n\}\}\)的定义,\(A_k=\{k+1,k+2,k+3,…\}\),所以你【逐点排查】法泵理【对任意\(m\in\mathbb{N}\), 只要\(n\ge m\) 就有 \(m\not\in A_n\) 所以
\(\quad\forall m\in\mathbb{N}\,(m\not\in\displaystyle\lim_{n\to\infty}A_n=N_{\infty})\)
\(\quad\)故\(N_{\infty}\)不含任何自然数,即\(N_{\infty}=\varnothing\)】\(\color{red}{错就错在m并未遍历\mathbb{N}^+!}\)根据数的三歧性(也叫数的三分律):你只证明了①、m<n;②、m=n这两种情,而对③、m>n这种情形根本就未论及,事实上m>n时,\(m∈A_n\)才是\(A_∞≠\phi\)的关键,如\(\forall k∈\mathbb{N}\)固然有当n≤k时\(n\notin A_k\),但当n>k时,如n=k+1;n=k+2;n=k+3;……却有\(A_k=\{k+1,k+2,k+3,…\}\),所以你说你的【逐点排查】遍历了\(\mathbb{N}^+\)的所有自然数,欺骗你自己个也许有可能。欺骗论坛中众多网友那是根本不可能的。所以你的【逐点排查】最多也是证明了\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\),根本就没有证明到\(\displaystyle\lim_{n→∞} A_n=\phi\)即你根本就没有证明到\(N_∞=\phi\)!对于单减集列极限集,以周民强《实变函数论》为代表的现行教科书都一致认为\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n\);所以对elim所给集列\(\{A_n=\{m∈N:m>n\}\}\)有\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……\}≠\phi\)!现行教科书求单减极列\(\{A_n\}\)的极限集都是根据极限集的定义直按计算\(\displaystyle\lim_{n→∞} A_n\)的。要想用\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\)论证\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)就必须弄清楚相对于\(A_n、A_n^c\)的全集\(\Omega\)是什么?因为对任何集列\(\{A_n\}\)、任何时候都有\(\Omega=A_n\cup A_n^c\),对\(\{A_n=\{m∈N:m>n\}\}\)有\(\Omega=A_1\cup A_1^c=\)\(A_2\cup A_2^c=\)……\(\displaystyle\lim_{n→∞} A_n\cup\displaystyle\lim_{n→∞} A_n^c=\)\(\displaystyle\bigcup_{n=1}^∞ A_n^c\)\(\cup\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\)。
\(\Omega=\displaystyle\bigcup_{n=1}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),于是\(\forall k∈\mathbb{N}\)有\(A_k=\displaystyle\bigcup_{n={k+1}}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),根据Cantor超穷数和方嘉琳《集合论》超限数理论,我们立得\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\)\(\displaystyle\bigcap_{n=1}^ω\{n+1,n+2,n+3,…\}\)=\(\{ω+1,ω+2,ω+3,…\}\),所以\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\)
至于戏证\(\mathbb{N}=\phi\),那是对【逐点排查】生吞周氏《实变函数论》P9页例5的嘲讽。由\(\forall n∈N,恒有n∈[n,∞)\)得\(\mathbb{N}\subseteq [n,∞)\)有什么错?而\(\displaystyle\lim_{n→∞}\mathbb{N}\subseteq\displaystyle\lim_{n→∞} [n,∞)=\phi\)这不是你证明\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\phi\)的贯用手笔吗?elim野种,\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\),\(\Omega-\mathbb{N}=\{ω+1,ω+2,…,ω+\nu\}\)还等于空集吗?野种真是野啊!
回复 支持 反对

使用道具 举报

发表于 2024-9-24 16:37 | 显示全部楼层
elim 发表于 2024-9-24 13:00
本人一般不跟孬种交流,因为孬种就其本性是不可理喻的.
所以一般满足于拨乱反正, 从简科普, 以正视听. 故 ...


elim,你的【逐点排查】遍历了\(\mathbb{N}^+\)所有数了吗?根据你的单减集列\(\{A_n=\{m∈N:m>n\}\}\)的定义,\(A_k=\{k+1,k+2,k+3,…\}\),所以你【逐点排查】法泵理【对任意\(m\in\mathbb{N}\), 只要\(n\ge m\) 就有 \(m\not\in A_n\) 所以
\(\quad\forall m\in\mathbb{N}\,(m\not\in\displaystyle\lim_{n\to\infty}A_n=N_{\infty})\)
\(\quad\)故\(N_{\infty}\)不含任何自然数,即\(N_{\infty}=\varnothing\)】\(\color{red}{错就错在m并未遍历\mathbb{N}^+!}\)根据数的三歧性(也叫数的三分律):你只证明了①、m<n;②、m=n这两种情,而对③、m>n这种情形根本就未论及,事实上m>n时,\(m∈A_n\)才是\(A_∞≠\phi\)的关键,如\(\forall k∈\mathbb{N}\)固然有当n≤k时\(n\notin A_k\),但当n>k时,如n=k+1;n=k+2;n=k+3;……却有\(A_k=\{k+1,k+2,k+3,…\}\),所以你说你的【逐点排查】遍历了\(\mathbb{N}^+\)的所有自然数,欺骗你自己个也许有可能。欺骗论坛中众多网友那是根本不可能的。所以你的【逐点排查】最多也是证明了\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\),根本就没有证明到\(\displaystyle\lim_{n→∞} A_n=\phi\)即你根本就没有证明到\(N_∞=\phi\)!对于单减集列极限集,以周民强《实变函数论》为代表的现行教科书都一致认为\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n\);所以对elim所给集列\(\{A_n=\{m∈N:m>n\}\}\)有\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……\}≠\phi\)!现行教科书求单减极列\(\{A_n\}\)的极限集都是根据极限集的定义直按计算\(\displaystyle\lim_{n→∞} A_n\)的。要想用\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\)论证\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)就必须弄清楚相对于\(A_n、A_n^c\)的全集\(\Omega\)是什么?因为对任何集列\(\{A_n\}\)、任何时候都有\(\Omega=A_n\cup A_n^c\),对\(\{A_n=\{m∈N:m>n\}\}\)有\(\Omega=A_1\cup A_1^c=\)\(A_2\cup A_2^c=\)……\(\displaystyle\lim_{n→∞} A_n\cup\displaystyle\lim_{n→∞} A_n^c=\)\(\displaystyle\bigcup_{n=1}^∞ A_n^c\)\(\cup\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\)。
\(\Omega=\displaystyle\bigcup_{n=1}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),于是\(\forall k∈\mathbb{N}\)有\(A_k=\displaystyle\bigcup_{n={k+1}}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),根据Cantor超穷数和方嘉琳《集合论》超限数理论,我们立得\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\)\(\displaystyle\bigcap_{n=1}^ω\{n+1,n+2,n+3,…\}\)=\(\{ω+1,ω+2,ω+3,…\}\),所以\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\)
至于戏证\(\mathbb{N}=\phi\),那是对【逐点排查】生吞周氏《实变函数论》P9页例5的嘲讽。由\(\forall n∈N,恒有n∈[n,∞)\)得\(\mathbb{N}\subseteq [n,∞)\)有什么错?而\(\displaystyle\lim_{n→∞}\mathbb{N}\subseteq\displaystyle\lim_{n→∞} [n,∞)=\phi\)这不是你证明\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\phi\)的贯用手笔吗?elim野种,\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\),\(\Omega-\mathbb{N}=\{ω+1,ω+2,…,ω+\nu\}\)还等于空集吗?课堂上计算到\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…,\}\)就行了!若有人问及它是否为空才展开计算!其余地方,请结合教材自酌!
回复 支持 反对

使用道具 举报

发表于 2024-9-24 20:31 | 显示全部楼层

elim,你的【逐点排查】遍历了\(\mathbb{N}^+\)所有数了吗?根据你的单减集列\(\{A_n=\{m∈N:m>n\}\}\)的定义,\(A_k=\{k+1,k+2,k+3,…\}\),所以你【逐点排查】法泵理【对任意\(m\in\mathbb{N}\), 只要\(n\ge m\) 就有 \(m\not\in A_n\) 所以
\(\quad\forall m\in\mathbb{N}\,(m\not\in\displaystyle\lim_{n\to\infty}A_n=N_{\infty})\)
\(\quad\)故\(N_{\infty}\)不含任何自然数,即\(N_{\infty}=\varnothing\)】\(\color{red}{错就错在m并未遍历\mathbb{N}^+!}\)根据数的三歧性(也叫数的三分律):你只证明了①、m<n;②、m=n这两种情,而对③、m>n这种情形根本就未论及,事实上m>n时,\(m∈A_n\)才是\(A_∞≠\phi\)的关键,如\(\forall k∈\mathbb{N}\)固然有当n≤k时\(n\notin A_k\),但当n>k时,如n=k+1;n=k+2;n=k+3;……却有\(A_k=\{k+1,k+2,k+3,…\}\),所以你说你的【逐点排查】遍历了\(\mathbb{N}^+\)的所有自然数,欺骗你自己个也许有可能。欺骗论坛中众多网友那是根本不可能的。所以你的【逐点排查】最多也是证明了\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\),根本就没有证明到\(\displaystyle\lim_{n→∞} A_n=\phi\)即你根本就没有证明到\(N_∞=\phi\)!对于单减集列极限集,以周民强《实变函数论》为代表的现行教科书都一致认为\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n\);所以对elim所给集列\(\{A_n=\{m∈N:m>n\}\}\)有\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……\}≠\phi\)!现行教科书求单减极列\(\{A_n\}\)的极限集都是根据极限集的定义直按计算\(\displaystyle\lim_{n→∞} A_n\)的。要想用\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\)论证\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)就必须弄清楚相对于\(A_n、A_n^c\)的全集\(\Omega\)是什么?因为对任何集列\(\{A_n\}\)、任何时候都有\(\Omega=A_n\cup A_n^c\),对\(\{A_n=\{m∈N:m>n\}\}\)有\(\Omega=A_1\cup A_1^c=\)\(A_2\cup A_2^c=\)……\(\displaystyle\lim_{n→∞} A_n\cup\displaystyle\lim_{n→∞} A_n^c=\)\(\displaystyle\bigcup_{n=1}^∞ A_n^c\)\(\cup\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\)。
\(\Omega=\displaystyle\bigcup_{n=1}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),于是\(\forall k∈\mathbb{N}\)有\(A_k=\displaystyle\bigcup_{n={k+1}}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),根据Cantor超穷数和方嘉琳《集合论》超限数理论,我们立得\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\)\(\displaystyle\bigcap_{n=1}^ω\{n+1,n+2,n+3,…\}\)=\(\{ω+1,ω+2,ω+3,…\}\),所以\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\)
至于戏证\(\mathbb{N}=\phi\),那是对【逐点排查】生吞周氏《实变函数论》P9页例5的嘲讽。由\(\forall n∈N,恒有n∈[n,∞)\)得\(\mathbb{N}\subseteq [n,∞)\)有什么错?而\(\displaystyle\lim_{n→∞}\mathbb{N}\subseteq\displaystyle\lim_{n→∞} [n,∞)=\phi\)这不是你证明\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\phi\)的贯用手笔吗?elim野种,\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\),\(\Omega-\mathbb{N}=\{ω+1,ω+2,…,ω+\nu\}\)还等于空集吗?课堂上计算到\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…,\}\)就行了!若有人问及它是否为空才展开计算!其余地方,请结合教材自酌!
回复 支持 反对

使用道具 举报

发表于 2024-9-24 21:28 | 显示全部楼层
elim 发表于 2024-9-24 21:14
本人一般不跟孬种交流,因为孬种就其本性是不可理喻的.
所以一般满足于拨乱反正, 从简科普, 以正视听. 故 ...


elim野种,你的【逐点排查】遍历了\(\mathbb{N}^+\)所有数了吗?根据你的单减集列\(\{A_n=\{m∈N:m>n\}\}\)的定义,\(A_k=\{k+1,k+2,k+3,…\}\),所以你【逐点排查】法泵理【对任意\(m\in\mathbb{N}\), 只要\(n\ge m\) 就有 \(m\not\in A_n\) 所以
\(\quad\forall m\in\mathbb{N}\,(m\not\in\displaystyle\lim_{n\to\infty}A_n=N_{\infty})\)
\(\quad\)故\(N_{\infty}\)不含任何自然数,即\(N_{\infty}=\varnothing\)】\(\color{red}{错就错在m并未遍历\mathbb{N}^+!}\)根据数的三歧性(也叫数的三分律):你只证明了①、m<n;②、m=n这两种情,而对③、m>n这种情形根本就未论及,事实上m>n时,\(m∈A_n\)才是\(A_∞≠\phi\)的关键,如\(\forall k∈\mathbb{N}\)固然有当n≤k时\(n\notin A_k\),但当n>k时,如n=k+1;n=k+2;n=k+3;……却有\(A_k=\{k+1,k+2,k+3,…\}\),所以你说你的【逐点排查】遍历了\(\mathbb{N}^+\)的所有自然数,欺骗你自己个也许有可能。欺骗论坛中众多网友那是根本不可能的。所以你的【逐点排查】最多也是证明了\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\),根本就没有证明到\(\displaystyle\lim_{n→∞} A_n=\phi\)即你根本就没有证明到\(N_∞=\phi\)!对于单减集列极限集,以周民强《实变函数论》为代表的现行教科书都一致认为\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n\);所以对elim所给集列\(\{A_n=\{m∈N:m>n\}\}\)有\(\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……\}≠\phi\)!现行教科书求单减极列\(\{A_n\}\)的极限集都是根据极限集的定义直按计算\(\displaystyle\lim_{n→∞} A_n\)的。要想用\(\displaystyle\bigcup_{n=1}^∞ A_n^c=\mathbb{N}^+\)论证\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)就必须弄清楚相对于\(A_n、A_n^c\)的全集\(\Omega\)是什么?因为对任何集列\(\{A_n\}\)、任何时候都有\(\Omega=A_n\cup A_n^c\),对\(\{A_n=\{m∈N:m>n\}\}\)有\(\Omega=A_1\cup A_1^c=\)\(A_2\cup A_2^c=\)……\(\displaystyle\lim_{n→∞} A_n\cup\displaystyle\lim_{n→∞} A_n^c=\)\(\displaystyle\bigcup_{n=1}^∞ A_n^c\)\(\cup\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\)。
\(\Omega=\displaystyle\bigcup_{n=1}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),于是\(\forall k∈\mathbb{N}\)有\(A_k=\displaystyle\bigcup_{n={k+1}}^∞ A_n^c\cup\displaystyle\lim_{n→∞}\{n+1,n+2,…\}\),根据Cantor超穷数和方嘉琳《集合论》超限数理论,我们立得\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\)\(\displaystyle\bigcap_{n=1}^ω\{n+1,n+2,n+3,…\}\)=\(\{ω+1,ω+2,ω+3,…\}\),所以\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\)
至于戏证\(\mathbb{N}=\phi\),那是对【逐点排查】生吞周氏《实变函数论》P9页例5的嘲讽。由\(\forall n∈N,恒有n∈[n,∞)\)得\(\mathbb{N}\subseteq [n,∞)\)有什么错?而\(\displaystyle\lim_{n→∞}\mathbb{N}\subseteq\displaystyle\lim_{n→∞} [n,∞)=\phi\)这不是你证明\(\displaystyle\lim_{n→∞}\{n+1,n+2,n+3,…\}=\phi\)的贯用手笔吗?elim野种,\(\Omega=\{1,2,…,\nu,ω+1,ω+2,…,ω+\nu\}\),\(\Omega-\mathbb{N}=\{ω+1,ω+2,…,ω+\nu\}\)还等于空集吗?野种真是野啊!
回复 支持 反对

使用道具 举报

发表于 2024-9-25 21:31 | 显示全部楼层
elim 发表于 2024-9-24 22:13
本人一般不跟孬种交流,因为孬种就其本性是不可理喻的.
所以一般满足于拨乱反正, 从简科普, 以正视听. 故 ...


        elim最近发布的【逐点排查定理】只不过是过去众多伪命题的改版。\(\color{red}{elim【逐点排查定理】内容是:}\)
       (1)、\((\forall α∈E\exists β∈\Lambda(α∈A_β))\implies E\cap\displaystyle\bigcup_{\lambda\in\Lambda} A_\lambda=E\)
       (2)、\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)。
       因elim对他所给的定理没有给出证明,所以老夫只对命题(2)作简略分析并举出反例,其余留着elim自省!
        elim命题  (2)【\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)】没有问题。但由此得出结论\(\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)却是错误的!这是elim谓词逻辑演译有意忽视之处。因为由\(A\cap B=\phi\)可能的结果有①、\(A=\phi,B≠\phi\);②、\(A≠\phi,B=\phi\);③、\(A=\phi,B=\phi\);④、\(A≠\phi,B≠\phi\)。
       对elim所列【应用】以及其它非学术的龌蹉语言留待elim自省。下边老夫略举几个反例予以说明:
【反例1】:令\(\Lambda=N^+\),\(A_k=\{k^2,(k+1)^2,…\displaystyle\lim_{n→∞} n^2\}\),E=\(\displaystyle\bigcup_{k=1}^∞ A_k^c\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{n^2\}≠\phi\)
【反例2】令\(\Lambda=N^+\),\(A_k=\{2k,2(k+1),…\displaystyle\lim_{n→∞} 2n\}\),E=\(\displaystyle\bigcup_{k=1}^∞ A_k^c\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{2k\}≠\phi\)
【反例3】令\(\Lambda=N^+\),\(A_k=\{cos2kπ,cos2(k+1)π,…\displaystyle\lim_{n→∞}cos2nπ\}\),E=\(\displaystyle\bigcup_{k=2}^∞ k\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{cos2kπ\}≠\phi\)
【反例4】令\(\Lambda=N^+\),\(A_k=\{x|x=e^\tfrac{1}{k},k∈N^+\}\),\(E=\mathbb{N}^+\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{e^\tfrac{1}{n}\}≠\phi\)
【反例5】令\(\Lambda=N^+\),\(A_k=(\tfrac{1}{k},\displaystyle\lim_{n→∞}\tfrac{1}{n})\)(k∈N),E=\(\mathbb{N}^+\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=(0,1)≠\phi\)
       总之满足(2)\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)例子很多!但它们都得不到\(\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)这个结论。
       所以elim的【应用】 取 \(E=Λ=N,A_n=\{m∈N:m>n\}(n∈N)\)
据(2) 立得\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)是错误的!上面五个反例(当然这样的反例还很多),都说明命题若A则B正确,也不能保证命题若非A则非B正确。
        借用elim的【本人一般不跟孬种交流,因为孬种就其本性是不可理喻的】,但孬种用错误命题向我叫阵,所以我也乐意奉陪孬种到底!
回复 支持 反对

使用道具 举报

发表于 2024-9-25 22:09 | 显示全部楼层

        elim最近发布的【逐点排查定理】只不过是过去众多伪命题的改版。\(\color{red}{elim【逐点排查定理】内容是:}\)
       (1)、\((\forall α∈E\exists β∈\Lambda(α∈A_β))\implies E\cap\displaystyle\bigcup_{\lambda\in\Lambda} A_\lambda=E\)
       (2)、\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)。
       因elim对他所给的定理没有给出证明,所以老夫只对命题(2)作简略分析并举出反例,其余留着elim自省!
        elim命题  (2)【\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)】没有问题。但由此得出结论\(\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)却是错误的!这是elim谓词逻辑演译有意忽视之处。因为由\(A\cap B=\phi\)可能的结果有①、\(A=\phi,B≠\phi\);②、\(A≠\phi,B=\phi\);③、\(A=\phi,B=\phi\);④、\(A≠\phi,B≠\phi\)。
       对elim所列【应用】以及其它非学术的龌蹉语言留待elim自省。下边老夫略举几个反例予以说明:
【反例1】:令\(\Lambda=N^+\),\(A_k=\{k^2,(k+1)^2,…\displaystyle\lim_{n→∞} n^2\}\),E=\(\displaystyle\bigcup_{k=1}^∞ A_k^c\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{n^2\}≠\phi\)
【反例2】令\(\Lambda=N^+\),\(A_k=\{2k,2(k+1),…\displaystyle\lim_{n→∞} 2n\}\),E=\(\displaystyle\bigcup_{k=1}^∞ A_k^c\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{2k\}≠\phi\)
【反例3】令\(\Lambda=N^+\),\(A_k=\{cos2kπ,cos2(k+1)π,…\displaystyle\lim_{n→∞}cos2nπ\}\),E=\(\displaystyle\bigcup_{k=2}^∞ k\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{cos2kπ\}≠\phi\)
【反例4】令\(\Lambda=N^+\),\(A_k=\{x|x=e^\tfrac{1}{k},k∈N^+\}\),\(E=\mathbb{N}^+\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{e^\tfrac{1}{n}\}≠\phi\)
【反例5】令\(\Lambda=N^+\),\(A_k=(\tfrac{1}{k},\displaystyle\lim_{n→∞}\tfrac{1}{n})\)(k∈N),E=\(\mathbb{N}^+\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=(0,1)≠\phi\)
       总之满足(2)\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)例子很多!但它们都得不到\(\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)这个结论。
       所以elim的【应用】 取 \(E=Λ=N,A_n=\{m∈N:m>n\}(n∈N)\)
据(2) 立得\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)是错误的!上面五个反例(当然这样的反例还很多),都说明命题若A则B正确,也不能保证命题若非A则非B正确。
        借用elim的【本人一般不跟孬种交流,因为孬种就其本性是不可理喻的】,但孬种用错误命题向我叫阵,所以我也乐意奉陪孬种到底!
回复 支持 反对

使用道具 举报

发表于 2024-9-25 22:22 | 显示全部楼层
elim 发表于 2024-9-25 22:21
本人一般不跟孬种交流,因为孬种就其本性是不可理喻的.
所以一般满足于拨乱反正, 从简科普, 以正视听. 故 ...


        elim最近发布的【逐点排查定理】只不过是过去众多伪命题的改版。\(\color{red}{elim【逐点排查定理】内容是:}\)
       (1)、\((\forall α∈E\exists β∈\Lambda(α∈A_β))\implies E\cap\displaystyle\bigcup_{\lambda\in\Lambda} A_\lambda=E\)
       (2)、\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)。
       因elim对他所给的定理没有给出证明,所以老夫只对命题(2)作简略分析并举出反例,其余留着elim自省!
        elim命题  (2)【\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)】没有问题。但由此得出结论\(\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)却是错误的!这是elim谓词逻辑演译有意忽视之处。因为由\(A\cap B=\phi\)可能的结果有①、\(A=\phi,B≠\phi\);②、\(A≠\phi,B=\phi\);③、\(A=\phi,B=\phi\);④、\(A≠\phi,B≠\phi\)。
       对elim所列【应用】以及其它非学术的龌蹉语言留待elim自省。下边老夫略举几个反例予以说明:
【反例1】:令\(\Lambda=N^+\),\(A_k=\{k^2,(k+1)^2,…\displaystyle\lim_{n→∞} n^2\}\),E=\(\displaystyle\bigcup_{k=1}^∞ A_k^c\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{n^2\}≠\phi\)
【反例2】令\(\Lambda=N^+\),\(A_k=\{2k,2(k+1),…\displaystyle\lim_{n→∞} 2n\}\),E=\(\displaystyle\bigcup_{k=1}^∞ A_k^c\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{2k\}≠\phi\)
【反例3】令\(\Lambda=N^+\),\(A_k=\{cos2kπ,cos2(k+1)π,…\displaystyle\lim_{n→∞}cos2nπ\}\),E=\(\displaystyle\bigcup_{k=2}^∞ k\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{cos2kπ\}≠\phi\)
【反例4】令\(\Lambda=N^+\),\(A_k=\{x|x=e^\tfrac{1}{k},k∈N^+\}\),\(E=\mathbb{N}^+\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{e^\tfrac{1}{n}\}≠\phi\)
【反例5】令\(\Lambda=N^+\),\(A_k=(\tfrac{1}{k},\displaystyle\lim_{n→∞}\tfrac{1}{n})\)(k∈N),E=\(\mathbb{N}^+\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=(0,1)≠\phi\)
       总之满足(2)\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)例子很多!但它们都得不到\(\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)这个结论。
       所以elim的【应用】 取 \(E=Λ=N,A_n=\{m∈N:m>n\}(n∈N)\)
据(2) 立得\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)是错误的!上面五个反例(当然这样的反例还很多),都说明命题若A则B正确,也不能保证命题若非A则非B正确。
        借用elim的【本人一般不跟孬种交流,因为孬种就其本性是不可理喻的】,但孬种用错误命题向我叫阵,所以我也乐意奉陪孬种到底!
回复 支持 反对

使用道具 举报

发表于 2024-9-25 22:30 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-9-26 03:58 编辑
elim 发表于 2024-9-25 22:26
本人一般不跟孬种交流,因为孬种就其本性是不可理喻的.
所以一般满足于拨乱反正, 从简科普, 以正视听. 故 ...



        elim最近发布的【逐点排查定理】只不过是过去众多伪命题的改版。\(\color{red}{elim【逐点排查定理】内容是:}\)
       (1)、\((\forall α∈E\exists β∈\Lambda(α∈A_β))\implies E\cap\displaystyle\bigcup_{\lambda\in\Lambda} A_\lambda=E\)
       (2)、\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)。
       因elim对他所给的定理没有给出证明,所以老夫只对命题(2)作简略分析并举出反例,其余留着elim自省!
        elim命题  (2)【\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)】没有问题。但由此得出结论\(\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)却是错误的!这是elim谓词逻辑演译有意忽视之处。因为由\(A\cap B=\phi\)可能的结果有①、\(A=\phi,B≠\phi\);②、\(A≠\phi,B=\phi\);③、\(A=\phi,B=\phi\);④、\(A≠\phi,B≠\phi\)。
       对elim所列【应用】以及其它非学术的龌蹉语言留待elim自省。下边老夫略举几个反例予以说明:
【反例1】:令\(\Lambda=N^+\),\(A_k=\{k^2,(k+1)^2,…\displaystyle\lim_{n→∞} n^2\}\),E=\(\displaystyle\bigcup_{k=1}^∞ A_k^c\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{n^2\}≠\phi\)
【反例2】令\(\Lambda=N^+\),\(A_k=\{2k,2(k+1),…\displaystyle\lim_{n→∞} 2n\}\),E=\(\displaystyle\bigcup_{k=1}^∞ A_k^c\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{2k\}≠\phi\)
【反例3】令\(\Lambda=N^+\),\(A_k=\{cos2kπ,cos2(k+1)π,…\displaystyle\lim_{n→∞}cos2nπ\}\),E=\(\displaystyle\bigcup_{k=2}^∞ k\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{cos2kπ\}≠\phi\)
【反例4】令\(\Lambda=N^+\),\(A_k=\{x|x=e^\tfrac{1}{k},k∈N^+\}\),\(E=\mathbb{N}^+\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=\displaystyle\lim_{n→∞}\{e^\tfrac{1}{n}\}≠\phi\)
【反例5】令\(\Lambda=N^+\),\(A_k=(\tfrac{1}{k},\displaystyle\lim_{n→∞}\tfrac{1}{n})\)(k∈N),E=\(\mathbb{N}^+\);虽然有\(E\cap\displaystyle\bigcap_{n=1}^∞ A_n=\phi\),但\(\displaystyle\lim_{n→∞} A_n=(0,1)≠\phi\)
       总之满足(2)\((\forall α∈E\exists β∈\Lambda(α\notin A_β))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)例子很多!但它们都得不到\(\displaystyle\bigcap_{\lambda\in\Lambda} A_\lambda=\phi\)这个结论。
       所以elim的【应用】 取 \(E=Λ=N,A_n=\{m∈N:m>n\}(n∈N)\)
据(2) 立得\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)是错误的!上面五个反例(当然这样的反例还很多),都说明命题若A则B正确,也不能保证命题若非A则非B正确。
        借用elim的【本人一般不跟孬种交流,因为孬种就其本性是不可理喻的】,但孬种用错误命题向我叫阵,所以我也乐意奉陪孬种到底!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-4-28 00:55 , Processed in 0.085417 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表