|
谢谢天山草! 电脑丰富了我们的生活。 谢谢天山草!
- Table[Simplify[(Sin[k A] Csc[A])/RecurrenceTable[{a[n] == 2 Cos[A]*a[n - 1] - a[n - 2], a[1] == 1, a[2] == 2 Cos[A]}, a[n], {n, k, k}]], {k, 25}]
复制代码
{{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}}
6楼, 3楼, 2楼是相通的。
\(D_{0}=\sin(1A)\csc(A)=1,\)
\(D_{1}=\sin(2A)\csc(A)=2 \cos(A)=2 \cos(A),\)
\(D_{2}=\sin(3A)\csc(A)=1 + 2 \cos(2 A)=4\cos^2(A)-1,\)
\(D_{3}=\sin(4A)\csc(A)= 2\cos(A) + 2\cos(3 A)=8\cos^3(A)-4\cos(A),\)
\(D_{4}=\sin(5A)\csc(A)= 1 + 2\cos(2 A) + 2 \cos(4 A)=16\cos^4(A)-12\cos^2(A) +1,\)
\(D_{5}=\sin(6A)\csc(A)=2\cos(A) + 2\cos(3 A) + 2\cos(5 A)=32\cos^5(A)-32\cos^3(A) + 6\cos(A),\)
\(D_{6}=\sin(7A)\csc(A)= 1 + 2 \cos(2 A) + 2 \cos(4 A) + 2 \cos(6 A)=64\cos^6(A)-80 \cos^4(A) + 24\cos^2(A)+1,\)
\(D_{7}=\sin(8A)\csc(A)= 2 \cos(A) + 2\cos(3 A) + 2\cos(5 A) + 2\cos(7 A)=......,\)
......
用上面的算法可以算3楼。3楼也可以用下面的算法。
- Table[Sum[2 Cos[(4 k - 3 - Cos[n Pi]) A/2], {k, (2 n + 3 + Cos[n Pi])/4}] - Cos[n Pi/2]^2, {n, 0, 9}]
复制代码
1,
2 Cos[A],
1 + 2 Cos[2 A],
2 Cos[A] + 2 Cos[3 A],
1 + 2 Cos[2 A] + 2 Cos[4 A],
2 Cos[A] + 2 Cos[3 A] + 2 Cos[5 A],
1 + 2 Cos[2 A] + 2 Cos[4 A] + 2 Cos[6 A],
2 Cos[A] + 2 Cos[3 A] + 2 Cos[5 A] + 2 Cos[7 A],
1 + 2 Cos[2 A] + 2 Cos[4 A] + 2 Cos[6 A] + 2 Cos[8 A],
2 Cos[A] + 2 Cos[3 A] + 2 Cos[5 A] + 2 Cos[7 A] + 2 Cos[9 A], |
|