数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 1447|回复: 222

\(\Huge\color{red}{\textbf{蠢疯顽瞎是全方位白痴.}}\)

[复制链接]
发表于 2024-10-5 15:15 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-2-19 11:08 编辑

若超穷数\(\omega\in\mathbb{R}=(-\infty,\infty)\), 则 \(n< \omega\,(\forall n\in\mathbb{N}).\)
据有序城公理,\(0< \omega^{-1}< 1/n (\forall n\in\mathbb{N})\) 于是有
\(0< \omega^{-1}\le\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}=0\) 即 \(0< 0\) 的孬种矛盾!
发表于 2024-10-6 06:25 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-2-26 20:58 编辑


       elim孬种于 2024-10-5 18:02发表的新帖【孬种靠楼上的胡扯就会有 \(\omega\in A_\omega\{m\in\mathbb{N}: m>\omega\}\) ?
\(\omega\) 属于大于它的元素所成的集合?蠢疯的种之孬,前无古人后无来者。另外如果上式成立,当然就有 \(\omega\in\mathbb{N}\subset\mathbb{R}=(-\infty,\infty)\) 这表示\(\omega\)是\(\mathbb{N}\) 的保序连续域扩充 \(\mathbb{R}\) 的成员,而\((-\infty,\infty)\)不含超限数:若超穷数\(\omega\in\mathbb{R}=(-\infty,\infty)\), 则 \(n< \omega\,(\forall n\in\mathbb{N}).\)据有序城公理,\(0< \omega^{-1}< 1/n (\forall n\in\mathbb{N})\) 于是有
\(0< \omega^{-1}\le\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}=0\) 即 \(0< 0\) 的孬种矛盾!孬种此番倒腾,除了显摆种够孬,还有啥作用,自蛋自捣?孬种作孬千头万绪,归根结底人太蠢种太孬】进一步暴露了e氏反现行数学,也反他自己的丑恶嘴睑。
       (1)、elim顽固坚持反现行教科书极限集的定义。根据e氏自己给定的单减集列\(\{A_n=\{m∈N:m>n\}\}\)的定义式,我们有\(\displaystyle\lim_{n→∞} A_n=\displaystyle\bigcap_{n=1}^∞ A_n=\{ω+1,ω+2,…\}\)。elim自己对Cantor的《超穷数理论基础》和方嘉琳的《集合论》一无所知或知元甚少,还说康托尔的超穷数或方嘉琳的超限数是胡扯!甚至提出【\(\omega\in A_\omega\{m\in\mathbb{N}: m>\omega\}\) 】这样的既反现行数学理论,又反e氏自己的\(A_n=\{m∈N:m>n\}\)定义的怪问。稍具数学常识的网友都能正确认识到这一怪问混淆了\(A_n\)中的\(n∈\mathbb{N},ω+j∈\displaystyle\lim_{n→∞} A_n\)的本质区别!不难看出e氏的怪问是其\(A_n\)不含\(A_n^c\)中的数,所以\(A_n是空集\)的混帐逻辑的变种。故此\(\omega\in A_\omega\{m\in\mathbb{N}: m>\omega\}\)才是e氏【的种之孬,前无古人后无来者】!
       (2)、elim为坚持其\(A_n\)不含\(A_n^c\)中的数,所以\(A_n是空集\)的混帐逻辑思维,又提出了【 \(\omega\in\mathbb{N}\)\(\subset\mathbb{R}=(-\infty,\infty)\) 这表示\(\omega\)是\(\mathbb{N}\) 的保序连续域扩充 \(\mathbb{R}\) 的成员,而\((-\infty,\infty)\)不含超限数。】春风晚霞再次提请elim孬种注意,在康托尔超穷数理论中\(\color{red}{ω没有直接前趋,ω和∞的区別主要在于“ω表示适当的无穷,而∞表示不适当的无穷”(参见Cantor《超穷数理论基础》P42页第14至15行)}\}\),如果把康托尔的正整数实无穷集合记为\(\mathscr{N}\),那么〖\(n\omega+j\in\mathscr{N}\subset\mathbb{R}=(-\infty,\infty)\) 这表示\(\omega+j\)是\(\mathscr{N}\) 的保序连续域扩充 \(\mathbb{R}\) 的成员,所以\(\color{red}{(-\infty,\infty)含超限数}\)。〗
       (3)、因为若超穷数\(n\omega+j\in\mathbb{R}=(-\infty,\infty)\), 则 \(\forall n\in\mathscr{N})\), 于是有\(\displaystyle\lim_{n\to\infty}{\small\frac{1}{-n}}=\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}\)\(=\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}=0\) ,因此不会产生任何矛盾!
       由于elim根本不承认康托尔的\(\color{red}{实无穷正整数集}\),所以其认知永远囿于他认识的那个\(\mathbb{N}\)。所以必然导致【\(0< \omega^{-1}< 1/n (\forall n\in\mathbb{N})\) 于是有\(0< \omega^{-1}\le\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}=0\) 即 \(0< 0\) 的孬种矛盾!】【\(\mathbb{N}\)是可保序连续扩充成实数域的唯一有加法乘法么元的有序半环】亦纯属瞎扯!你有什么理由说明\(\mathscr{N}\)不是可保序连续扩充成实数域的有加法乘法么元的有序半环?难道Cantor的集合论与超穷数理论与Cantor的实数理论不兼容吗!?
       综上分析,elim的“逐点排查”或“无穷交就是一种骤变”\(\color{red}{除了显摆野种够孬,还有啥作用}\)?野种作孬千头万绪,归根结底人太蠢种太杂!
回复 支持 1 反对 0

使用道具 举报

发表于 2024-10-8 05:46 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-10-8 05:55 编辑

elim的【 \(\omega\in\mathbb{N}\)\(\subset\mathbb{R}=(-\infty,\infty)\) 这表示\(\omega\)是\(\mathbb{N}\) 的保序连续域扩充 \(\mathbb{R}\) 的成员,而\((-\infty,\infty)\)不含超限数】的逻辑是混帐逻辑!在康托尔超穷数理论中ω没有直接前趋,ω和∞的区別主要在于“ω表示适当的无穷,而∞表示不适当的无穷”(参见Cantor《超穷数理论基础》P42页第14~15行),如果把康托尔的正整数实无穷集合记为\(\mathscr{N}\),那么〖\(n\omega+j\in\mathscr{N}\subset\mathbb{R}=(-\infty,\infty)\) 这表示\(\omega+j\)是\(\mathscr{N}\) 的保序连续域扩充 \(\mathbb{R}\) 的成员,所以\(\color{red}{(-\infty,\infty)含超限数}\)。〗又因为若超穷数\(n\omega+j\in\mathbb{R}=(-\infty,\infty)\), 则 \(\forall n\in\mathscr{N})\), 于是有\(\displaystyle\lim_{n\to\infty}{\small\frac{1}{-n}}\)\(=\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}\)\(=\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}=0\) ,因此不会产生任何矛盾!
       由于elim根本不承认康托尔的\(\color{red}{实无穷正整数集}\),所以其认知永远囿于他认识的那个\(\mathbb{N}\)。所以必然导致【\(0< \omega^{-1}< 1/n (\forall n\in\mathbb{N})\) 于是有\(0< \omega^{-1}\le\displaystyle\lim_{n\to\infty}{\small\frac{1}{n}}=0\) 即 \(0< 0\) 】正是elim人为制造的孬种矛盾!
回复 支持 1 反对 0

使用道具 举报

发表于 2025-2-23 10:15 | 显示全部楼层
\[\lim_{n\longrightarrow\infty}n=\alpha\in N\]\[\left\{ \alpha{,}\ \alpha+1{,}\ \alpha+2{,}\ \cdots\cdots\right\}\subset N\]

点评

\(\Huge\color{red}{\textbf{白痴的口号除了白痴,就是很白痴}}\)  发表于 2025-2-23 12:53
回复 支持 反对

使用道具 举报

发表于 2025-2-26 16:06 | 显示全部楼层
elim 发表于 2025-2-26 10:01
命 \(\displaystyle H_\infty=\bigcap_{n=1}^\infty A_n,\;\;(A_n:=\{m\in\mathbb{N}: m>n\})\)
1) 若\(m\ ...


(1)、 elim问【\(\displaystyle\lim_{n→∞}(n+j)\)与Weiestrass 极限定义没关系。那么它是什么?】
春风晚霞答:单减集极限集的定义是:\(\displaystyle\bigcap_{n=1}^∞ A_n\)=\(\displaystyle\lim_{n→∞} A_n\);单增集列极限集的定义是\(\displaystyle\bigcup_{n=1}^∞ A_n=\displaystyle\lim_{n→∞} A_n\)(参见周民强《实变函数论》P9页定义1.8);单调集列极限集都等于该集列定义式的极限(参见周民强《实变函数论》P9页例6);\(\displaystyle\lim_{n→∞}(n+j),j∈N\)是\(\displaystyle\lim_{n→∞}\{n+1,n+2,……,\}\)中元素的等价表示。\(\displaystyle\lim_{n→∞}(n+j)\)与Weiestrass 极限定义无直接联系。
(2) 、elim问【周民强将递降列的交\(\displaystyle\bigcap_{n=1}^∞ A_n\)定义为\(\displaystyle\lim_{n→∞} A_n\),那么\(\displaystyle\lim_{n→∞}A_n\)的定义是什么?】
春风晚霞答:\(\displaystyle\lim_{n→∞}A_n\)的定义就是对单调集列的定义式取极限。如单减集列\(\{A_n:=\{m∈N:m>n\}\}\)
极限集\(\displaystyle\lim_{n→∞}A_n=\)\(\displaystyle\lim_{n→∞}\{n+1,n+2,……,\}\). elim请你在发帖时少说一些与学术无关的话,像“孬种,种孬”之类的话,估计你爷爷都不会如此称谓他的同龄人的。我们年龄相差甚大,望先生自重!
回复 支持 1 反对 0

使用道具 举报

 楼主| 发表于 2025-2-26 20:42 | 显示全部楼层
顽瞎目测孬种计算均无法通过以下验证:
命 \(\displaystyle H_\infty=\bigcap_{n=1}^\infty A_n,\;\;(A_n:=\{m\in\mathbb{N}: m>n\})\)
1) 若\(m\in\displaystyle\bigcap_{n=1}^\infty A_n=N_{\infty}\), 则\(m\)是\(\{A_n\}\) 的公共成员,
\(\quad\)特别地, 此\(m\)是\(A_m\)的成员, 但这与\(A_m\) 的定义矛盾!
\(\quad\)故\(N_{\infty}\)必無成员,即\(\displaystyle\bigcap_{n=1}^\infty A_n=\varnothing\).
2) 记 \(v=\displaystyle\lim_{n\to\infty}n,\) 则对 \(m\in\mathbb{N}\,\)有\(\,m< m+1\le v\)
\(\quad\)\(v\)大于任意自然数因而不是自然数.
3) 假定\(v\in\mathbb{N}\) 则据\(v,\,A_n\)的定义 \(v\in A_n\,(\forall n\in\mathbb{N}).\)
\(\quad\)据1)即得谬论 \(v\in\varnothing\big(=\displaystyle\bigcap_{n=1}^\infty A_n\big)!\)
\(\quad\color{red}{\therefore\quad\boxed{v=\displaystyle\lim_{n\to\infty}n\not\in\mathbb{N}}}\)

孬种蠢疯是集论,分析,代数等全方位白痴.

点评

放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对无穷的认知还不及小学四年级的学生,一味胡搅蛮缠,打滚撒泼,真不要脸!  发表于 2025-2-26 20:54
回复 支持 反对

使用道具 举报

发表于 2025-2-27 00:09 | 显示全部楼层
elim 发表于 2025-2-26 20:42
顽瞎目测孬种计算均无法通过以下验证:
命 \(\displaystyle H_\infty=\bigcap_{n=1}^\infty A_n,\;\;(A_n: ...

elim的\(H_∞=\displaystyle\bigcap_{n=1} A_n\)中的∞就是皮亚诺意义下的超穷序列1,2,…,\(\displaystyle\lim_{n→∞} n-1\),\(\displaystyle\lim_{n→∞} n,\displaystyle\lim_{n→∞} n+1\),\(\displaystyle\lim_{n→∞} n+2\),…中的\(\displaystyle\lim_{n→∞} n\),在皮亚诺意义下实正整数集中每个成员都有定义,否则逆用皮亚诺公理自然数集\(\mathbb{N}=\phi\)。根据elim所给\(A_n:=\{m∈\mathbb{N}:m>n\}\)
1)若m∈\(\displaystyle\bigcap_{n=1}^∞ A_n=N_∞\),则m∈\(A_{\displaystyle\lim_{n→∞} n}=\)\(\{\displaystyle\lim_{n→∞} n+1,\displaystyle\lim_{n→∞} n+2,…\}\),所以即使有\(m\notin A_m\)\(H_n\)也不会产生任何矛盾。
2)记\(v=\displaystyle\lim_{n→∞} n\),则对m∈\(\mathbb{N}\),都有m+1∈\(\{1,2,…,V,v+1,v+2,…\}\)。
3)因为\(v=\displaystyle\lim_{n→∞} n\)∈\(\mathbb{N}\),所以\(v+1\),\(v+2\),…都属于皮亚诺意义下的实正整数集。
注意:若\(v=\displaystyle\lim_{n→∞} n\)\(\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
由于elim根本就不知道什么是无穷?什么是超穷?其对无穷的认知还不及小学四年级的学生。所以在你的眼中除你的胡说八道外什么都通不过检验。elim一味胡搅蛮缠,打滚撒泼,真不要脸!
回复 支持 1 反对 0

使用道具 举报

 楼主| 发表于 2025-2-27 01:19 | 显示全部楼层
顽瞎目测孬种计算均无法通过以下验证:
命 \(\displaystyle H_\infty=\bigcap_{n=1}^\infty A_n,\;\;(A_n:=\{m\in\mathbb{N}: m>n\})\)
1) 若\(m\in\displaystyle\bigcap_{n=1}^\infty A_n=N_{\infty}\), 则\(m\)是\(\{A_n\}\) 的公共成员,
\(\quad\)特别地, 此\(m\)是\(A_m\)的成员, 但这与\(A_m\) 的定义矛盾!
\(\quad\)故\(N_{\infty}\)必無成员,即\(\displaystyle\bigcap_{n=1}^\infty A_n=\varnothing\).
2) 记 \(v=\displaystyle\lim_{n\to\infty}n,\) 则对 \(m\in\mathbb{N}\,\)有\(\,m< m+1\le v\)
\(\quad\)\(v\)大于任意自然数因而不是自然数.
3) 假定\(v\in\mathbb{N}\) 则据\(v,\,A_n\)的定义 \(v\in A_n\,(\forall n\in\mathbb{N}).\)
\(\quad\)据1)即得谬论 \(v\in\varnothing\big(=\displaystyle\bigcap_{n=1}^\infty A_n\big)!\)
\(\quad\color{red}{\therefore\quad\boxed{v=\displaystyle\lim_{n\to\infty}n\not\in\mathbb{N}}}\)

孬种蠢疯是集论,分析,代数等全方位白痴.

点评

你关于无穷交的一切胡说八道,既不敢用极限集的定义,也不敢用交集的定义和运算规律,更不能指自然数从哪个数开始就没有后继,并且你论证均有论题荒唐,论点扯淡,论据牵强,论证循环的特点!如此证明岂不荒谬!  发表于 2025-2-27 06:17
回复 支持 反对

使用道具 举报

发表于 2025-2-27 06:17 | 显示全部楼层
elim的\(H_∞=\displaystyle\bigcap_{n=1} A_n\)中的∞就是皮亚诺意义下的超穷序列1,2,…,\(\displaystyle\lim_{n→∞} n-1\),\(\displaystyle\lim_{n→∞} n,\displaystyle\lim_{n→∞} n+1\),\(\displaystyle\lim_{n→∞} n+2\),…中的\(\displaystyle\lim_{n→∞} n\),在皮亚诺意义下实正整数集中每个成员都有定义,否则逆用皮亚诺公理自然数集\(\mathbb{N}=\phi\)。根据elim所给\(A_n:=\{m∈\mathbb{N}:m>n\}\)
1)若m∈\(\displaystyle\bigcap_{n=1}^∞ A_n=N_∞\),则m∈\(A_{\displaystyle\lim_{n→∞} n}=\)\(\{\displaystyle\lim_{n→∞} n+1,\displaystyle\lim_{n→∞} n+2,…\}\),所以即使有\(m\notin A_m\),\(H_n\)也不会产生任何矛盾。
2)记\(v=\displaystyle\lim_{n→∞} n\),则对m∈\(\mathbb{N}\),都有m+1∈\(\{1,2,…,v,v+1,v+2,…\}\)。
3)因为\(v=\displaystyle\lim_{n→∞} n\)∈\(\mathbb{N}\),所以\(v+1\),\(v+2\),…都属于皮亚诺意义下的实正整数集。
注意:若\(v=\displaystyle\lim_{n→∞} n\)\(\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
由于elim根本就不知道什么是无穷?什么是超穷?其对无穷的认知还不及小学四年级的学生。所以在你的眼中除你的胡说八道外什么都通不过检验。elim一味胡搅蛮缠,打滚撒泼,真不要脸!
回复 支持 1 反对 0

使用道具 举报

 楼主| 发表于 2025-2-27 06:40 | 显示全部楼层
孬种的胡扯与现行数学的基本公设共识全面冲突.
另外顽瞎目测孬种计算均无法通过以下验证:

命 \(\displaystyle H_\infty=\bigcap_{n=1}^\infty A_n,\;\;(A_n:=\{m\in\mathbb{N}: m>n\})\)
1) 若\(m\in\displaystyle\bigcap_{n=1}^\infty A_n=N_{\infty}\), 则\(m\)是\(\{A_n\}\) 的公共成员,
\(\quad\)特别地, 此\(m\)是\(A_m\)的成员, 但这与\(A_m\) 的定义矛盾!
\(\quad\)故\(N_{\infty}\)必無成员,即\(\displaystyle\bigcap_{n=1}^\infty A_n=\varnothing\).
2) 记 \(v=\displaystyle\lim_{n\to\infty}n,\) 则对 \(m\in\mathbb{N}\,\)有\(\,m< m+1\le v\)
\(\quad\)\(v\)大于任意自然数因而\(\color{red}{\boxed{v=\displaystyle\lim_{n\to\infty}n\not\in\mathbb{N}}}\)
3) 方程\(x+1=v\)没有自然数解,否则\(v\)是自然数的后继,
\(\quad\)与 2)矛盾. \(v\)无前趋, 含\(\mathbb{N}\cup\{v\}\)的序集Peano算术不成立.

孬种蠢疯,是集论,分析,代数等全方位白痴.

点评

你关于无穷交的一切胡说八道,既不敢用极限集的定义,也不敢用交集的定义和运算规律,更不能指自然数从哪个数开始就没有后继,并且你论证均有论题荒唐,论点扯淡,论据牵强,论证循环的特点!如此证明岂不荒谬!  发表于 2025-2-27 09:39
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-4-25 00:46 , Processed in 0.099210 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表