数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\bigcap_{n=1}^ ∞ \{m\in\mathbb{N}: m>n\}=\phi\textbf{ 及有关话题}\)

[复制链接]
发表于 2025-3-1 07:21 | 显示全部楼层
正整数集\(\mathbb{N}\)是无限集这是小学生都知道的常识。所以必有\(\displaystyle\lim_{n→∞} n\)是自然数。若不然,若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不是自然数。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以,若\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数,则\(\mathbb{N}=\phi\)!注意,虽然\(v\)和∞都表示无穷大,康托尔认为\(v\)是适当的无穷大,而∞则是不适当的无穷大。固此e氏的【自然数皆有限数】谬论无现行数学理论支撑,从而【\(\displaystyle\lim_{n\to\infty} n\)大于任意自然数】亦是扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-3-1 21:55 | 显示全部楼层
\(\mathbb{N}\)是无限集恰好说明\(\displaystyle\lim_{n\to\infty} n\)是自然数。若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不是自然数。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以,若\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数,则\(\mathbb{N}=\phi\)!试问elim【\(\displaystyle\lim_{n\to\infty} n\)大于任意自然数】就能证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数吗?这一命题的依据是什么?是因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)不是自然数吗?真他娘的扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 07:42 | 显示全部楼层
是的。根据皮亚诺公理,\(v=\displaystyle\lim_{n\to\infty} n\)是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)的后继\(v'=\displaystyle\lim_{n\to\infty} n+1\)也是自然数!这有什么不对,因为在皮亚诺实正整数序列中,有限后边有无限,无限后边有超限。试问elim,\(\displaystyle\lim_{n\to\infty} n>\)\(\displaystyle\lim_{n\to\infty} n+1\)的依据是什么?该不会是我elim说的【自然数皆有限数】,所以\(\displaystyle\lim_{n\to\infty} n+1<\)\(\displaystyle\lim_{n\to\infty} n\)吧?典型的循环论证,真他娘的扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:19 | 显示全部楼层
elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:25 | 显示全部楼层
elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:29 | 显示全部楼层
elim 发表于 2025-3-2 22:27
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:30 | 显示全部楼层
elim 发表于 2025-3-2 22:30
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-3-2 22:32 | 显示全部楼层
春风晚霞 发表于 2025-3-1 16:50
是的。根据皮亚诺公理,\(v=\displaystyle\lim_{n\to\infty} n\)是自然数,所以\(\displaystyle\lim_{n\to\ ...

对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任意自然数因而\(v\)不是自然数, 否则\(v+1\)是
自然数从而大于任意自然数的\(v\)大于自然数\(v+1\).
\(v\)与皮亚诺公理不合, 再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数
孬种所有谬论的终极依据是其人太蠢种太孬

回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:33 | 显示全部楼层
elim 发表于 2025-3-2 22:32
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 23:07 | 显示全部楼层
elim 发表于 2025-3-2 22:36
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-4-27 23:44 , Processed in 0.090471 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表