数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\bigcap_{n=1}^ ∞ \{m\in\mathbb{N}: m>n\}=\phi\textbf{ 及有关话题}\)

[复制链接]
发表于 2025-4-16 13:32 | 显示全部楼层
elim,,关于自然数命题证明的理论根据只能是皮亚谨公理或康托尔实正整数生成法则。其它的一切理论均是在自然数理论完善后发展起来的。所以无论用代数的、几何的、拓扑学的、测度学的……方法论证\(v=\displaystyle\lim_{n \to \infty} n\)是否存在,论证\(v=\displaystyle\lim_{n \to \infty} n\)是否属于\(\mathbb{N}\)都存在循环论证之嫌!所以,elim关于\(H_{\infty}=\phi\)数以千计的宿帖均是如此。对elim不断删、发的把戏我只能回复“胡说八道,无耻至极!“
回复 支持 反对

使用道具 举报

发表于 2025-4-16 20:06 | 显示全部楼层
elim,,关于自然数命题证明的理论根据只能是皮亚谨公理或康托尔实正整数生成法则。其它的一切理论均是在自然数理论完善后发展起来的。所以无论用代数的、几何的、拓扑学的、测度学的……方法论证\(v=\displaystyle\lim_{n \to \infty} n\)是否存在,论证\(v=\displaystyle\lim_{n \to \infty} n\)是否属于\(\mathbb{N}\)都存在循环论证之嫌!所以,elim关于\(H_{\infty}=\phi\)数以千计的宿帖均是如此。对elim不断删、发的把戏我只能回复“胡说八道,无耻至极!“
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-16 20:26 | 显示全部楼层
超出皮亚诺语境的顽瞎目测孬种计算
均无法通过以下验证:

命 \(\displaystyle H_\infty=\bigcap_{n=1}^\infty A_n,\;\;(A_n:=\{m\in\mathbb{N}: m>n\})\)
1) 若\(m\in\displaystyle\bigcap_{n=1}^\infty A_n=N_{\infty}\), 则\(m\)是\(\{A_n\}\) 的公共成员,
\(\quad\)特别地, 此\(m\)是\(A_m\)的成员, 但这与\(A_m\) 的定义矛盾!
\(\quad\)故\(N_{\infty}\)必無成员,即\(\displaystyle\bigcap_{n=1}^\infty A_n=\varnothing\).
2) 记 \(v=\displaystyle\lim_{n\to\infty}n,\) 则对 \(m\in\mathbb{N}\,\)有\(\,m< m+1\le v\)
\(\quad\)\(v\)大于任意自然数因而不是自然数.
3) 假定\(v\in\mathbb{N}\) 则据\(v,\,A_n\)的定义 \(v\in A_n\,(\forall n\in\mathbb{N}).\)
\(\quad\)据1)即得谬论 \(v\in\varnothing\big(=\displaystyle\bigcap_{n=1}^\infty A_n\big)!\)
\(\quad\color{red}{\therefore\quad\boxed{v=\displaystyle\lim_{n\to\infty}n\not\in\mathbb{N}}}\)

孬种蠢疯是集论,分析,代数等全方位白痴.
回复 支持 反对

使用道具 举报

发表于 2025-4-16 21:21 | 显示全部楼层
对于\(H_{\infty}=\displaystyle\bigcap_{n=1}^{\infty} A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,……,\)\(\quad (A_m:=\{m\in\mathbb{N}:m>n\}\);
1)若\(m\in\displaystyle\bigcap_{n=1}^{\infty} A_n=N_{\infty}\),则m是\(\{A_n\}=\{A_1,A_2,…,A_{\infty}\}\)的公共成员,但不是\(A_m\)的成员。这是因为\(H_{\infty}=\displaystyle\bigcap_{n=1}^{\infty} A_n\)只是\(\{A_1,A_2,…,A_{\infty}\}\)这无穷多个集合的交集。根据elim的孬种定义\(m\in\displaystyle\bigcap_{n=1}^{\infty} A_n=\)\(N_{\infty}必有m>{\infty}\),所以\(m\notin A_m\),从而也就环会产生什么矛盾。因此N_{\infty}\)必有成员,即\(\displaystyle\bigcap_{n=1}^{\infty} A_n\ne\phi\);
2)记\(v=\displaystyle\lim_{n \to \infty} n\)对\(m\in\mathbb{N}\)有\(m>m+1\le v\),\(v\)不小于所有自然数也没有什么错。也不会产生什么矛盾!
3)假定\(v\in\mathbb{N}\},则根据v,A_n\)的定义\(v\notin A_{v-j}\quad j\in\mathbb{N}\);
elim帖子中所谓三处矛盾,均是由elim只承认有限自然数,不承认无穷自然数。更不承认超穷自然数而导致的。所以elim才是集论,分析,代数等全方位白痴!

回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-16 21:51 | 显示全部楼层
春风晚霞 发表于 2025-4-16 05:59
试问极限超出皮亚诺公理语境,那么皮亚诺公理语境应如何界定?即在自然数集\(\mathbb{N}\)中哪些数在皮亚诺 ...


皮亚诺公理及其赖以建立和表述的最小
集论术语汇总及公理构成皮亚诺语境.
根据皮亚诺公理, 不存在没有后继的自
然数, 因\(v=\lim n\)大于(后于)所有自然
数,它不是任何自然数的后继, 故 v-1不
存在. 皮亚诺公理不适用于非自然数.
回复 支持 反对

使用道具 举报

发表于 2025-4-17 06:41 | 显示全部楼层
合论和超穷数理论均是康托尔提出的,所以在实正整数集中\(v=(\displaystyle\lim_{n \to \infty} n\)和\(v+j=(\displaystyle\lim_{n \to \infty} (n+j)\)存在的。臭便理论是你发明的,那里边没有无穷数也没有超数,但你不能强近另人接爱你的臭便思想!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-17 08:39 | 显示全部楼层
春风晚霞 发表于 2025-4-16 15:41
合论和超穷数理论均是康托尔提出的,所以在实正整数集中\(v=(\displaystyle\lim_{n \to \infty} n\)和\(v+j ...

超限数当然存在, 但不是皮亚诺意义上的自然数.
康托从来没有说他的超穷数是自然数. 在数学中
没有物理时间, 任何变换运算操作理论上都是映
射. 在此意义上都是瞬变.  这是无法推翻的事实.
另一方面, 我从来没有用此事实来论证推演数学.
据此对我的数学论述的指责污蔑推翻均告无效.
自取其辱而已.
回复 支持 反对

使用道具 举报

发表于 2025-4-17 09:33 | 显示全部楼层
elim,现行教科书是在戴、威、康数学理论框架下建立完善的,集合论、超穷数都是康托尔创立完善的。所以现行数学认同自然数集是无限集,也认同存在无穷大和超穷大正整数(即自然数)。你虽然自我感觉良好,但与戴、康、威相比,还不足以让我信奉你没有无穷大和超穷大实正整数的程度!其实你的“臭便”思想与现行数学并不兼容,你自欺尚可,欺人万万不可!说到底你没有任何资格强迫我接受接受你的“臭便”理论。所以,我认为你还是消停点好些!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-17 09:59 | 显示全部楼层
数学白痴的孬种自然数跟皮亚诺的自然数理论
戴德金,康托的实数理论,康托的超穷数理论
半毛钱关系都没有。但很孬种滚屁滔滔,自
取其辱,孬贴成片,傻气熏天。颇为有趣。
孬种从良难,难于上青天
回复 支持 反对

使用道具 举报

发表于 2025-4-17 10:08 | 显示全部楼层
elim,现行教科书是在戴、威、康数学理论框架下建立完善的,集合论、超穷数都是康托尔创立完善的。所以现行数学认同自然数集是无限集,也认同存在无穷大和超穷大正整数(即自然数)。你虽然自我感觉良好,但与戴、康、威相比,还不足以让我信奉你没有无穷大和超穷大实正整数的程度!其实你的“臭便”思想与现行数学并不兼容,你自欺尚可,欺人万万不可!说到底你没有任何资格强迫我接受接受你的“臭便”理论。所以,我认为你还是消停点好些!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-4-28 01:06 , Processed in 0.099927 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表