数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\color{red}{\textbf{人工智能已经胜出孬种蠢疯顽瞎}}\)

[复制链接]
发表于 2025-4-19 11:36 | 显示全部楼层

       elim,皮亚诺公理决定了\(v=\displaystyle\lim_{n \to \infty}x_n\)是自然数,你提供的论据皆不成立。理由如下:
       1)\(v=\displaystyle\lim_{n \to \infty} n\)不是\(\{n\}\)的最终元,因在\(v=\displaystyle\lim_{n \to \infty} n\)后边还有自然数\(v+k=\displaystyle\lim_{n \to \infty} (n+k)\)(\(k\in\mathbb{N}\))。
       2)若\(v=\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
       3)极限序数非自然数没有任何依据只是你的猜测,所以不能作为证据!
       综上\(v=\displaystyle\lim_{n \to \infty} n\)是自然数!
回复 支持 反对

使用道具 举报

发表于 2025-4-19 11:39 | 显示全部楼层

       elim,皮亚诺公理决定了\(v=\displaystyle\lim_{n \to \infty}x_n\)是自然数,你提供的论据皆不成立。理由如下:
       1)\(v=\displaystyle\lim_{n \to \infty} n\)不是\(\{n\}\)的最终元,因在\(v=\displaystyle\lim_{n \to \infty} n\)后边还有自然数\(v+k=\displaystyle\lim_{n \to \infty} (n+k)\)(\(k\in\mathbb{N}\))。
       2)若\(v=\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
       3)极限序数非自然数没有任何依据只是你的猜测,所以不能作为证据!
       综上\(v=\displaystyle\lim_{n \to \infty} n\)是自然数!
回复 支持 反对

使用道具 举报

发表于 2025-4-19 11:41 | 显示全部楼层

       elim,皮亚诺公理决定了\(v=\displaystyle\lim_{n \to \infty}x_n\)是自然数,你提供的论据皆不成立。理由如下:
       1)\(v=\displaystyle\lim_{n \to \infty} n\)不是\(\{n\}\)的最终元,因在\(v=\displaystyle\lim_{n \to \infty} n\)后边还有自然数\(v+k=\displaystyle\lim_{n \to \infty} (n+k)\)(\(k\in\mathbb{N}\))。
       2)若\(v=\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)!
       3)极限序数非自然数没有任何依据只是你的猜测,所以不能作为证据!
       综上\(v=\displaystyle\lim_{n \to \infty} n\)是自然数!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-19 11:42 | 显示全部楼层
皮亚诺公理决定了\(\displaystyle\lim_{n\to\infty}n\not\in\mathbb{N}\):
\(\small n< n^+\)故排列\(\small\{n\}\)无最终元, 因\(v\small=\displaystyle\lim_{n\to\infty}n\)
大于各自然数故而非自然数(首个极限序数)
故\(v\not\in\small\mathbb{N}\subsetneq\small\{0,1,2,\ldots,\displaystyle\lim_{n\to\infty}n\}=\mathbb{N}\cup\{v\}\)
蠢疯白痴身份被坐实, 孬贼船漏不打一处来
回复 支持 反对

使用道具 举报

发表于 2025-4-19 14:21 | 显示全部楼层
试问elim:1)皮亚诺公理哪一条决非定了\(\displaystyle\lim_{n \to \infty} n\notin\mathbb{N}\)?r把证明定出来给大家看看可以吗?2)你的\(\{n\}\)包括哪些自然数?有趋向无穷的自然数吗?3)由\(v\notin\mathbb{N}\subsetneq\{0,1,2,……,\displaystyle\lim_{n \to \infty} n\}=\mathbb{N}\cup\{v\}\)知\(v-1=\displaystyle\lim_{n \to \infty}(n-1)\)\(\in\mathbb{N}\)由皮亚诺公理第二条得\(v-1\)的后继\(v\in\mathbb{N}\)又何错之有?请证明\(\displaystyle\lim_{n \to \infty} n>\)\(\displaystyle\lim_{n \to \infty}n\)!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-4-19 19:41 , Processed in 0.131545 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表