数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\color{red}{\textbf{集论白痴孬种蠢疯不会算集合交}}\)

[复制链接]
发表于 2025-3-1 22:03 | 显示全部楼层
\(\mathbb{N}\)是无限集恰好说明\(\displaystyle\lim_{n\to\infty} n\)是自然数。若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不是自然数。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以,若\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数,则\(\mathbb{N}=\phi\)!试问elim【\(\displaystyle\lim_{n\to\infty} n\)大于任意自然数】就能证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数吗?这一命题的依据是什么?是因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)不是自然数吗?真他娘的扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 07:49 | 显示全部楼层
是的。根据皮亚诺公理,\(v=\displaystyle\lim_{n\to\infty} n\)是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)的后继\(v'=\displaystyle\lim_{n\to\infty} n+1\)也是自然数!这有什么不对,因为在皮亚诺实正整数序列中,有限后边有无限,无限后边有超限。试问elim,\(\displaystyle\lim_{n\to\infty} n>\)\(\displaystyle\lim_{n\to\infty} n+1\)的依据是什么?该不会是我elim说的【自然数皆有限数】,所以\(\displaystyle\lim_{n\to\infty} n+1<\)\(\displaystyle\lim_{n\to\infty} n\)吧?典型的循环论证,真他娘的扯淡!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:35 | 显示全部楼层
elim 发表于 2025-3-2 15:25
孬种不等式\(v>v+1\)的依据是’自然数‘v
大于任意自然数.
孬种所有谬论的终极根据是人太蠢种太孬

放你娘的臭狗屁!【\(v>v+1\)的依据是“自然数v”大于任意自然数】,那么【“自然数v”大于任意自然数】的依据又是什么呢?所以elim的这段狗屁言论的实质是:因为\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数!像这种循环论证的错误,学过平面几何的初中生都不会犯!elim你还好意思在这里显摆!真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 22:36 | 显示全部楼层
elim 发表于 2025-3-2 21:50
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 23:00 | 显示全部楼层
elim 发表于 2025-3-2 22:38
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 23:03 | 显示全部楼层
elim 发表于 2025-3-2 23:01
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 03:17 | 显示全部楼层

       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!
       elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 08:06 | 显示全部楼层

       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!
       elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 11:07 | 显示全部楼层
elim 发表于 2025-3-3 10:58
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...


       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对每个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!
       elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 12:41 | 显示全部楼层
elim 发表于 2025-3-3 11:56
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...


       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对每个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!
       elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 1 反对 0

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-4-28 01:01 , Processed in 0.078963 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表