|
本帖最后由 春风晚霞 于 2025-4-16 23:56 编辑
对于\(H_{\infty}=\displaystyle\bigcap_{n=1}^{\infty} A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,……,\)\(\quad (A_m:=\{m\in\mathbb{N}:m>n\}\);
1)若\(m\in\displaystyle\bigcap_{n=1}^{\infty} A_n=N_{\infty}\),则m是\(\{A_n\}=\{A_1,A_2,…,A_{\infty}\}\)的公共成员,但不是\(A_m\)的成员。这是因为\(H_{\infty}=\displaystyle\bigcap_{n=1}^{\infty} A_n\)只是\(\{A_1,A_2,…,A_{\infty}\}\)这无穷多个集合的交集。根据elim的孬种定义\(m\in\displaystyle\bigcap_{n=1}^{\infty} A_n=\)\(N_{\infty}必有m>{\infty}\),所以\(m\notin A_m\),从而也就环会产生什么矛盾。因此N_{\infty}\)必有成员,即\(\displaystyle\bigcap_{n=1}^{\infty} A_n\ne\phi\);
2)对\(m\in\mathbb{N}\)有\(m>m+1\le v\),\(v\)不小于所有自然数也没有什么错。也不会产生什么矛盾!
3)假定\(v\in\mathbb{N}\},则根据v,A_n\)的定义\(v\notin A_{v-j}\quad j\in\mathbb{N}\);
elim帖子中的三处矛盾,均是由elim只承认有限自然数,不承认无穷自然数。更不承认超穷自然数而导致的。所以elim才是集论,分析,代数等全方位白痴! |
|