数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 464|回复: 62

\(孬种搅局14\Huge\color{red}{\textbf{超穷数存在于}\mathbb{N}\textbf{之外}}\)

[复制链接]
发表于 2025-4-28 23:04 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-4-28 17:07 编辑

根据皮亚诺公理, 除了\(0\)没有前趋, 其他自然数
均有前趋后继, 但若假定有超穷自然数, 则最小
超穷自然数\(v\)就没有前趋. 因为比它小的自然数
必为有限自然数, 这些数的后继仍有限, 故没有
一个是\(v\)的前趋, 可见主张超穷自然数存在就是
主张存在第二个没有前趋的自然数.是反皮亚诺
的认知.责问孬种哪个有限数的后继是最小超
穷数?

康托的超穷数存在于自然数之外.
蠢疯的骚搬运凸显孬种白痴之贱.
发表于 2025-4-29 05:44 | 显示全部楼层

       对于elim这种泼妇,你谎言千遍仍是谎言!在\(\mathbb{N}_{\infty}\)中,最小的超穷数是那个预先给定的怎样大的自然数(有限数)\(x\)的后继\(x+1\)。这都证明过多少次了,你从不读贴,怪得了谁?对你这种泼妇无论多少次证明\(v=\displaystyle\lim_{n \to \infty}n\)的存在性,以及\(v=\displaystyle\lim_{n \to \infty}n\)既不是皮亚诺自然数集的最小元,也不是皮亚诺自然数集的最大元。\(v=\displaystyle\lim_{n \to \infty}n\)既有前趋\(v-1=\displaystyle\lim_{n \to \infty}n-1\),也有后继\(v+1=\displaystyle\lim_{n \to \infty}n+1\)。但总认为【孬种驴滚堵不了最小超穷数无前趋漏洞.我已发新主题应对孬种的此等搅局】,elim自始至终都说不出皮亚诺算术系统中的漏洞在那理?为什么那里是漏洞?一味删、发宿帖来彰显自己的伟大,耍赖撒泼真不是东西。
       elim认为【根据皮亚诺公理, 除了0没有前趋, 其他自然数均有前趋后继, 但若假定有超穷自然数, 则最小超穷自然数\(v\)就没有前趋. 因为比它小的自然数必为有限自然数, 这些数的后继仍有限, 故没有一个是\(v\)的前趋, 可见主张超穷自然数存在就是主张存在第二个没有前趋的自然数.是反皮亚诺的认识.】elim的这段陈述是在没有弄清楚\(\infty\)的定义基础上的糊涂认识。那什么是\(\infty\)呢?现行教科书是这样定义的
       【定义】:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷大(参见菲赫全哥尔茨《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义)
       由于自然数集\(\mathbb{N}\)无限集,所以对任意预先给定的任意大自然数\(x\)必有\(\mathbb{N}=\{n|n\le x,n∈N\}\)\(\cup\{ n|n>x,n∈N\}\)。其中\(\mathbb{N}_e=\{n|n\le x,n∈N\}\)叫自然数集\(\mathbb{N}\)的一个截段,\(\mathbb{N}_e\)是有限集,且\(\mathbb{N}_e\)中的每个数都是有限数。而\(\mathbb{N}_∞=\{ n|n>x,n∈N\}=\)\(\{x+1,x+2,…,x+k,…\displaystyle\lim_{n \to \infty}n-2,…\)\( \displaystyle\lim_{n \to \infty}n-1,\) \(\displaystyle\lim_{n \to \infty} n\) \(\displaystyle\lim_{n \to \infty} n+1,…\}\)是无限集,\(\mathbb{N}_∞\)中最小的元素是\(x+1\)。
       也因为\(x\)  预先定的无论怎样大的自然数,所以\(\mathbb{N}_∞=\)\(\{x+1, x+2,…,v-j=\displaystyle\lim_{n \to \infty}n-j\}\)\((j\in\mathbb{N}_e)\)中的元素都是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。同理,\(v+j=\displaystyle\lim_{n \to \infty}n+j\)\((j\in\mathbb{N}_e)\)也是由皮亚诺公理(Peano axioms)第二条逻辑确定的自然数。
       至此,我们证明了自然数\(v\mp j=\displaystyle\lim_{n \to \infty}n\mp j\)\((j\in\mathbb{N}_e)\)都是皮亚诺公理(Peano axioms)意义下的自然数。它们不仅客观存在,而且彼此互异。所以,自然数\(v=\displaystyle\lim_{n \to \infty} n\)既不是最小的超穷,也不是最大的超穷数。\(v=\displaystyle\lim_{n \to \infty} n\)的前趋是\(v-1=\displaystyle\lim_{n \to \infty} n-1\);\(v=\displaystyle\lim_{n \to \infty} n\)的后继是\(v+1=\displaystyle\lim_{n \to \infty} n+1\)。
也正因为如此,我们说自然数集中的数没有最大,只有更大。
       【特别强调】:elim或ChatGPT所说的【自然数皆有限数】与自然数集是无限集不自然洽。即如果【自然数皆有限数】那么自然数集就不可能是无限集!
回复 支持 反对

使用道具 举报

发表于 2025-4-29 06:53 | 显示全部楼层
根据\(\mathbb{N}_∞\)的定义,那个预先给定的无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数(谢邦杰观点),己多次给出证明,你从不读与自己认真不同的帖子。你怪得了谁!

点评

\(\Huge\color{red}{\textbf{放你娘的臭狗屁}}!\)  发表于 2025-4-29 08:09
\(\Huge\rolor{red}{\textbf{放你娘的臭狗屁}}\)  发表于 2025-4-29 07:43
回复 支持 反对

使用道具 举报

发表于 2025-4-29 10:15 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-4-29 11:27 编辑


elim胡说【孬种不住狗屁不通地驴打滚,,故意回避哪个有限数的后继为最小超穷数的问题.白痴连 x+1 是超穷数, x 亦然也不知道.哈哈哈哈蠢疯顽瞎种太孬】
其实,狗屁不通地驴打滚的孬种就是elim!根据谢邦杰《超穷数与超穷论法》p4页第一行所说的“无限集合的基数叫超穷基数”。因为\(\mathbb{N}\)是无限集,所以\(\mathbb{N}\)必含超穷数。老夫从未回避【哪个有限数的后继为最小超穷数的问题】!你狂吠多少次自然数集不含超穷数(或超穷数在自然数集之外),我就证明了多少次在自然数集中“那个预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。“比你能写出、读出、想像得到的自然数都大的自然数叫无穷自然数。”这可是小学四年级对小学生渗透无穷自然数的描述性定义。所以这个“预先给定的、无论怎样大的自然数”就是自然数集\(\mathbb{N}\)中有限与无限的分界。即自然数集\(\mathbb{N}=\{n:n\le x\quad n\in\mathbb{N}\}\)\(\cup\{n:n>x\quad n\in\mathbb{N}\}\);现行数学中称集合\(\mathbb{N}_e=\{n:n\le x\quad n\in\mathbb{N}\}\)为自然数列的一个截段(参见方嘉琳《集合论》P82页第3—5行)。集合\(\mathbb{N}_e\)中的数均为有限数。而集合\(\mathbb{N}_{\infty}=\{n:n> x\quad n\in\mathbb{N}\}\)是无限集,\(\mathbb{N}_{\infty}\)中的任何一个自然数都是无穷自然数!所以我们有理由说第一个大于“预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。elim务必先证明【x+1 是超穷数, x 亦然】,再判断谁是白痴!若你不能证明【x+1 是超穷数, x 亦然】这个命题,就像泼妇一样骂这骂那,那就是放你娘的臭狗屁!

回复 支持 反对

使用道具 举报

发表于 2025-4-29 11:37 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-4-29 11:43 编辑


elim胡说【孬种不住狗屁不通地驴打滚,,故意回避哪个有限数的后继为最小超穷数的问题.白痴连 x+1 是超穷数, x 亦然也不知道.哈哈哈哈蠢疯顽瞎种太孬】
其实,狗屁不通地驴打滚的孬种就是elim!根据谢邦杰《超穷数与超穷论法》p4页第一行所说的“无限集合的基数叫超穷基数”。因为\(\mathbb{N}\)是无限集,所以\(\mathbb{N}\)必含超穷数。老夫从未回避【哪个有限数的后继为最小超穷数的问题】!你狂吠多少次自然数集不含超穷数(或超穷数在自然数集之外),我就证明了多少次在自然数集中“那个预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。“比你能写出、读出、想像得到的自然数都大的自然数叫无穷自然数。”这可是小学四年级对小学生渗透无穷自然数的描述性定义。所以这个“预先给定的、无论怎样大的自然数”就是自然数集\(\mathbb{N}\)中有限与无限的分界。即自然数集\(\mathbb{N}=\{n:n\le x\quad n\in\mathbb{N}\}\)\(\cup\{n:n>x\quad n\in\mathbb{N}\}\);现行数学中称集合\(\mathbb{N}_e=\{n:n\le x\quad n\in\mathbb{N}\}\)为自然数列的一个截段(参见方嘉琳《集合论》P82页第3—5行)。集合\(\mathbb{N}_e\)中的数均为有限数。而集合\(\mathbb{N}_{\infty}=\{n:n> x\quad n\in\mathbb{N}\}\)是无限集,\(\mathbb{N}_{\infty}\)中的任何一个自然数都是无穷自然数!所以我们有理由说第一个大于“预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。elim务必先证明【x+1 是超穷数, x 亦然】,再判断谁是白痴!若你不能证明【x+1 是超穷数, x 亦然】这个命题,就像泼妇一样骂这骂那,那就是放你娘的臭狗屁!
回复 支持 反对

使用道具 举报

发表于 2025-4-29 11:43 | 显示全部楼层

elim胡说【孬种不住狗屁不通地驴打滚,,故意回避哪个有限数的后继为最小超穷数的问题.白痴连 x+1 是超穷数, x 亦然也不知道.哈哈哈哈蠢疯顽瞎种太孬】
其实,狗屁不通地驴打滚的孬种就是elim!根据谢邦杰《超穷数与超穷论法》p4页第一行所说的“无限集合的基数叫超穷基数”。因为\(\mathbb{N}\)是无限集,所以\(\mathbb{N}\)必含超穷数。老夫从未回避【哪个有限数的后继为最小超穷数的问题】!你狂吠多少次自然数集不含超穷数(或超穷数在自然数集之外),我就证明了多少次在自然数集中“那个预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。“比你能写出、读出、想像得到的自然数都大的自然数叫无穷自然数。”这可是小学四年级对小学生渗透无穷自然数的描述性定义。所以这个“预先给定的、无论怎样大的自然数”就是自然数集\(\mathbb{N}\)中有限与无限的分界。即自然数集\(\mathbb{N}=\{n:n\le x\quad n\in\mathbb{N}\}\)\(\cup\{n:n>x\quad n\in\mathbb{N}\}\);现行数学中称集合\(\mathbb{N}_e=\{n:n\le x\quad n\in\mathbb{N}\}\)为自然数列的一个截段(参见方嘉琳《集合论》P82页第3—5行)。集合\(\mathbb{N}_e\)中的数均为有限数。而集合\(\mathbb{N}_{\infty}=\{n:n> x\quad n\in\mathbb{N}\}\)是无限集,\(\mathbb{N}_{\infty}\)中的任何一个自然数都是无穷自然数!所以我们有理由说第一个大于“预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。elim务必先证明【x+1 是超穷数, x 亦然】,再判断谁是白痴!若你不能证明【x+1 是超穷数, x 亦然】这个命题,就像泼妇一样骂这骂那,那就是放你娘的臭狗屁!
回复 支持 反对

使用道具 举报

发表于 2025-4-29 11:45 | 显示全部楼层

elim胡说【孬种不住狗屁不通地驴打滚,,故意回避哪个有限数的后继为最小超穷数的问题.白痴连 x+1 是超穷数, x 亦然也不知道.哈哈哈哈蠢疯顽瞎种太孬】
其实,狗屁不通地驴打滚的孬种就是elim!根据谢邦杰《超穷数与超穷论法》p4页第一行所说的“无限集合的基数叫超穷基数”。因为\(\mathbb{N}\)是无限集,所以\(\mathbb{N}\)必含超穷数。老夫从未回避【哪个有限数的后继为最小超穷数的问题】!你狂吠多少次自然数集不含超穷数(或超穷数在自然数集之外),我就证明了多少次在自然数集中“那个预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。“比你能写出、读出、想像得到的自然数都大的自然数叫无穷自然数。”这可是小学四年级对小学生渗透无穷自然数的描述性定义。所以这个“预先给定的、无论怎样大的自然数”就是自然数集\(\mathbb{N}\)中有限与无限的分界。即自然数集\(\mathbb{N}=\{n:n\le x\quad n\in\mathbb{N}\}\)\(\cup\{n:n>x\quad n\in\mathbb{N}\}\);现行数学中称集合\(\mathbb{N}_e=\{n:n\le x\quad n\in\mathbb{N}\}\)为自然数列的一个截段(参见方嘉琳《集合论》P82页第3—5行)。集合\(\mathbb{N}_e\)中的数均为有限数。而集合\(\mathbb{N}_{\infty}=\{n:n> x\quad n\in\mathbb{N}\}\)是无限集,\(\mathbb{N}_{\infty}\)中的任何一个自然数都是无穷自然数!所以我们有理由说第一个大于“预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。elim务必先证明【x+1 是超穷数, x 亦然】,再判断谁是白痴!若你不能证明【x+1 是超穷数, x 亦然】这个命题,就像泼妇一样骂这骂那,那就是放你娘的臭狗屁!
回复 支持 反对

使用道具 举报

发表于 2025-4-29 13:04 | 显示全部楼层

       elim,放你娘的臭狗屁!老子何时【故意回避哪个有限数的后继为最小超穷数的问题.白痴连 x+1 是超穷数, x 亦然也不知道.】你他娘的根据现行的数学理论证明了【连 x+1 是超穷数, x 亦然】了吗?你他娘的想靠频发(发了删、删了又发)宿帖耍赖,真不要脸!
       其实,狗屁不通地驴打滚的孬种是你elim!根据谢邦杰《超穷数与超穷论法》p4页第一行所说的“无限集合的基数叫超穷基数”。因为\(\mathbb{N}\)是无限集,所以\(\mathbb{N}\)必含超穷数。老夫从未回避【哪个有限数的后继为最小超穷数的问题】!事实上,你狂吠多少次自然数集不含超穷数(或超穷数在自然数集之外),我就证明了多少次在自然数集中“那个预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。“比你能写出、读出、想像得到的自然数都大的自然数叫无穷自然数。”这可是小学四年级对学生渗透无穷自然数的描述性定义。所以这个“预先给定的、无论怎样大的自然数”就是自然数集\(\mathbb{N}\)中有限与无限的分界点。即自然数集\(\mathbb{N}=\{n:n\le x\quad n\in\mathbb{N}\}\)\(\cup\{n:n>x\quad n\in\mathbb{N}\}\)。
       现行数学中称集合\(\mathbb{N}_e=\{n:n\le x\quad n\in\mathbb{N}\}\)为自然数列的一个截段(参见方嘉琳《集合论》P82页第3—5行)。集合\(\mathbb{N}_e\)中的数均为有限数。而集合\(\mathbb{N}_{\infty}=\{n:n> x\quad n\in\mathbb{N}\}\)是无限集,\(\mathbb{N}_{\infty}\)中的任何一个自然数都是无穷自然数!所以我们有理由说第一个大于“预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。
       elim务必先证明【x+1 是超穷数, x 亦然】,再判断谁是白痴!若你不能证明【x+1 是超穷数, x 亦然】这个命题,就像泼妇一样骂这骂那,那就是放你娘的臭狗屁!
回复 支持 反对

使用道具 举报

发表于 2025-4-30 04:14 | 显示全部楼层

       elim,放你娘的臭狗屁!老子何时【故意回避哪个有限数的后继为最小超穷数的问题.白痴连 x+1 是超穷数, x 亦然也不知道.】你他娘的根据现行的数学理论证明了【x+1 是超穷数, x 亦然】了吗?你他娘的想靠频发(发了删、删了又发)宿帖耍赖,真不要脸!
       其实,狗屁不通地驴打滚的孬种是你elim!根据谢邦杰《超穷数与超穷论法》p4页第一行所说的“无限集合的基数叫超穷基数”。因为\(\mathbb{N}\)是无限集,所以\(\mathbb{N}\)必含超穷数。老夫从未回避【哪个有限数的后继为最小超穷数的问题】!事实上,你狂吠多少次自然数集不含超穷数(或超穷数在自然数集之外),我就证明了多少次在自然数集中“那个预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。“比你能写出、读出、想像得到的自然数都大的自然数叫无穷自然数。”这可是小学四年级对学生渗透无穷自然数的描述性定义。所以这个“预先给定的、无论怎样大的自然数”就是自然数集\(\mathbb{N}\)中有限与无限的分界点。即自然数集\(\mathbb{N}=\{n:n\le x\quad n\in\mathbb{N}\}\)\(\cup\{n:n>x\quad n\in\mathbb{N}\}\)。
       现行数学中称集合\(\mathbb{N}_e=\{n:n\le x\quad n\in\mathbb{N}\}\)为自然数列的一个截段(参见方嘉琳《集合论》P82页第3—5行)。集合\(\mathbb{N}_e\)中的数均为有限数。而集合\(\mathbb{N}_{\infty}=\{n:n> x\quad n\in\mathbb{N}\}\)是无限集,\(\mathbb{N}_{\infty}\)中的任何一个自然数都是无穷自然数!所以我们有理由说第一个大于“预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。
       elim务必先证明【x+1 是超穷数, x 亦然】,再判断谁是白痴!若你不能证明【x+1 是超穷数, x 亦然】这个命题,就像泼妇一样骂这骂那,那就是放你娘的臭狗屁!
回复 支持 反对

使用道具 举报

发表于 2025-4-30 17:28 | 显示全部楼层
\(\huge\color{red}{春风晚霞并非搅局}\)


       elim先生发表在《再论自然数皆非超穷数》下的主帖的论证是循环论证。
       elim先生认为【根据wiki 词条【有限集】一个集合被称为有限集合, 简单来说就是其元素个数有限, 严格说是\(\color{navy}{存在某自然数 n}\)使\(\{0,1,…,n\}\)与该集对等(之间存在双射).即一集合被称为有限, 如果其基数是自然数.】


       〖评注:因为在自然数理论中,自然数集\(\{0,1,2,…,n-1\}\)称作自然数列的一个截段,自然数列的任何一个截段所得自然数集均为有限集。然而这些截段所成集合均为自然数集\(\mathbb{N}\)的真子集。理由很筒单,根据皮亚诺公理第二条,这个\(\color{navy}{存在某自然数n}\)必存在其后继n+1,且n+1也是自然数。持读应用皮亚诺公理第二条,\(n+j\)(j为有限自然数)也是自然数。并且\(n+j\in\mathbb{N}\),所以\(\{0,1,2,…,n\}\)\(\subset\mathbb{N}\)〗


       elim先生认为【\(\color{blur}{由此知\aleph_0不是自然数}\). 因\(\mathbb{N}\)不是有限集 (它与其真子集对等). 同理由第一个超穷序数ω=N非有限知ω不是自然数.\(\mathbb{N}\)是有限基数, 有限序数全体.它不含超穷数.自然数无穷多, 皆有限数均为事实, 不矛盾】


       〖评注:elim先生的\(\color{navy}{由此知\aleph_0不是自然数}\)中的由此推不出\(\aleph_0\)不是然数。因为由此的“此”是自然数列的一个截段,它的势就是这个截段中元素的个数,是有限自然数。而\(\aleph_0 \)是\(\mathbb{N}\)的势,其基数、序数都等于\(\aleph_0 \)。\(v=\displaystyle\lim_{n \to \infty} n\)。因为\(v=\displaystyle\lim_{n \to \infty} n\) “既表示把一个个单位加起来的确切计数,又表示它们汇集而成的整体(康托尔语),如自然数10它既表示从\(0\overbrace{+1+1+…+1}^{10个1连续相加}\),又所示\(\overline{\overline{\{1,2,…,10\}}}=10\),故此我们完全有理由说\(v=\displaystyle\lim_{n \to \infty} n=\in\mathbb{N}\)!所以elim先生的【\(\color{navy}{由此知\aleph_0不是自然数}\)】的论据牵强,逻辑混乱。同时elim先生所说的【自然数无穷多, 皆有限数均为事实 ,不矛盾】这是自掩尴尬的托词,【自然数无穷多】就说了自然数集的势是\(\aleph_0\)。自然数【皆有限数】则说明\(\overline{\overline{\{有限自然数\}}}=\alpha=有限数\)。所以这两个事的矛盾是不可调和的对抗性矛盾!
       elim先生的【第一个超穷序数ω=\(\mathbb{N}\)非有限知ω不是自然数】同义反复,简捷的说就是“ω不是自然数”。其实“ω不是自然数”既不是elim先生的发明,更不是elim先生的发现。从康托尔有穷基数的无穷序列1,2,…,\(\nu-2\),\(\nu-1\),\(\nu= \displaystyle\lim_{n \to \infty} n\) ,ω,ω+1,…\(\}\)看确实有\(ω\notin\mathbb{N}=\{1,2,…\nu\}\),但\(ω\in\{ω,ω+1,…,\}\),ω是康托尔设想的一个“表示(I)的整体和(I)中数之间的一种相继次序”新数(参见康托尔《超穷数理论基础》P43页第3—4行)。ω在超穷自然数集合\(\{ω,ω+1,…,\}\)中与0在\(\mathbb{N}\)中一样只有后继没有前趋。虽然\(\nu= \displaystyle\lim_{n \to \infty} n\)、\(\aleph_0 \)、ω的值都是无穷,但康托尔认为\(\nu= \displaystyle\lim_{n \to \infty} n\)、\(\aleph_0 \)、ω是适当的无穷,而\(\infty\)则是不适当的无穷(参见康托尔《超穷数理论基础》P42页1—12行)。意即\(\infty\)不是自然数中的\(\infty\)是不适当的无穷。〗


       elim认为【根据戴德金(Richard Dedekind)一个集合无穷当且仅当它有与之时等的真子集;一个集合有穷当且仅当它无与之对等的真子集.


       〖评注: 运用楼主提供的【戴德金(Richard个集合有穷当且仅当它无与之对等的真子集。】我们很容易证得\(\mathbb{N}\)是无限集,并且\(v=\displaystyle\lim_{n \to \infty} n\in\mathbb{N}\).
       【证明1:】设集合\(\mathscr{A}=\{x:x=2n\quad n\in\mathbb{N}\),建立\(\mathbb{N}\)到\(\mathscr{A}\)的一一映射\(f(n)=2n\),易证\(\overline{\overline{\mathbb{N}}}=\)\(\overline{\overline{\mathscr{A}}}\),所以\(\mathbb{N}\)是无限集!
       【证明2:】建立\(\mathbb{N}\)到\(\mathbb{N}\)的一一映射\(f(x)=x\),因为\(\overline{\overline{\mathbb{N}}}=\)\(\overline{\overline{\mathbb{N}}}\),所以\(\displaystyle\lim_{n \to \infty} n\in\mathbb{N}\)〗

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-19 16:50 , Processed in 0.094648 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表