|
∠ADB = a, BP/DP=3Sin[a]/(2Cos[a]) = 3/8, (2Sin[a])^2 + (3Sin[a])^2 = AB^2, AB/Sin[a] = D = ABCD的外接圆直径。
- Solve[{(3 Sin[a])/(2 Cos[a]) == 3/8, (2 Sin[a])^2 + (3 Sin[a])^2 == AB^2, AB/Sin[a] == D, 1 > a > 0, AB > 0}, {a, AB, D}]
复制代码
{a -> ArcTan[1/4], AB -> Sqrt[13/17], D -> Sqrt[13]}} |
|