数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 463|回复: 2

\(\huge\color{red}{用冯氏定义证明:若\lim n\notin\mathbb{N},则\mathbb{N}=\phi}\)

[复制链接]
发表于 2025-5-21 15:00 | 显示全部楼层 |阅读模式
本帖最后由 春风晚霞 于 2025-5-24 07:25 编辑


       由冯\(\cdot\)诺依曼自然数定义(或自然数生成法则)得:\(0=\phi\),\(1=\{0\}\),\(2=\{0,\)\(1\}\),\(3=\{0,1,2\}\),…,\(k=\{0,1,2,…(k-1)\}\),…  .
       两端分别求并得:\(\displaystyle\bigcup_{k=0}^{\infty}k=\)\(\displaystyle\bigcup_{k=1}^{\infty}\{0,1,2,3,…,(k-1)\}\) .所以\(\{1,2,3,…,\displaystyle\lim_{n \to \infty}n\}=\)\(\displaystyle\bigcup_{n=1}^{\infty}\{0,\)\(1,2,3,…,\)\((n-1)\}\).
       若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}\cap\displaystyle\lim_{n \to \infty}\{1,2,…n\}=\)
\( \mathbb{N}\cap\displaystyle\bigcup_{n=1}^{\infty}\{0,1,2,3,…,(n-1)\}=\)\( \displaystyle\bigcup_{n=1}^{\infty}\mathbb{N}\)\(\cap\{0,1,2,\)\(3,…,(n-1)\}=\phi\).所以\(\mathbb{N}\cap\{0\}=\)\(\mathbb{N}\cap\{0,1\}=\)\(\mathbb{N}\cap\{0,1,2\}=\)……\(=\mathbb{N}\cap\{0,1,2,…(\displaystyle\lim_{n \to \infty}n-1)\}=\phi\),所以\(\mathbb{N}=\phi\)
 楼主| 发表于 2025-9-9 06:13 | 显示全部楼层

       【定理】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-2),(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-2)\),\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
elim出自反对春风晚霞极限可达(其实是反对威尔斯特拉斯极限定义)的需要,釆用野蛮地强盗逻辑,强行定义\(\displaystyle\lim_{n \to \infty}n)\notin\mathbb{N}\),其实就算你阴谋得逞,你也不能证明【自然数皆有限数】!故此你还是清醒点吧,伟大的民科领袖!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-9-9 21:54 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页,第19—20行),ω表示第一个超穷数。Cantor非负整数集为\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)  .  其中,\(\Omega_j=\{j\cdot\omega,\)\(j\cdot\omega\)\(+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42页、P43页、P44页) . 所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        elim为坚持他的\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),提出了如下歪理:【\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)与\(\mathbb{N}\)無最大元之间无法调和的矛盾.】!elim言外之意是康托尔的非负整数理论和皮亚诺公理不自洽。现在我们证明如下命题:
        〖命题:〗皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        〖证明:〗因为\(\nu(=\displaystyle\lim_{n \to \infty}n)\in\mathbb{N}\)(康托尔《超穷数理论基础》P42页、P75页:有穷基数的无穷序列1,2,…,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),…),又因\(\omega\)是极限序数(即\(\omega\)没有直接前趋,所以\(\nu+1\ne\omega\),又由于\(\omega\)的后继是\(\omega+1\),所以\(\nu+1<\)\(\omega\)(非负整数的三歧性) .因此\((\nu+1)\in\mathbb{N}\)(皮亚诺公理第二条对\(\nu(=\displaystyle\lim_{n \to \infty}n)\)成立.即\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\color{red}{不是}\)\(\mathbb{N}\)的最大元!〖证毕〗
        所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)与\(\mathbb{N}\)無最大元之间\(\color{red}{并不存在}\)无法调和的矛盾!所以elim因臆测而产生的桤忧【顽瞎目测\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)与\(\mathbb{N}\)無最大元之间无法调和的矛盾】当休矣!
        至于elim【我可以随时挂叫兽黑板】,我隨时奉陪到底!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-18 06:44 , Processed in 0.102958 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表