数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 1181|回复: 86

\(\Huge\color{red}{{\min}\textbf{无穷序数}}\textbf{ = 1st极限序数}\)

[复制链接]
发表于 2025-5-30 11:48 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-7-30 23:11 编辑

【定理】最小无穷序数=第一个极限序数
【证明】最小无穷序数\(\mu\)之前的序数皆有限
\(\qquad\)序数故其后继皆非无穷序数\(\mu\). 因此 \(\mu\)
\(\qquad\)是最小非后继序数, 即第一个极限序数.
发表于 2025-5-30 11:49 | 显示全部楼层
在实正整数列1,2,3,……\(\nu\),\(\omega\),\(\omega+1\),\(\omega+2\),……中,康托尔说“数\(\nu\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体“(参见康托尔著《超穷数理论基础》P42页19—20行)所谓把一个个单位放地去意即:数\(\nu\)的基数\(\nu=\overbrace{1+1+……+1}^{\displaystyle\lim_{n \to \infty}n个1}\),数\(\nu\)的序数就是实正整数列1,2,3,……\(\nu\),\(\omega\),\(\omega+1\),\(\omega+2\),……中表示第\(\nu\)号。所以所以数\(\nu\)既是基数也是序数。正整数10既表自然数列1,2,3,4,5,6,7,8,9,10,……它是10号位置的自然数,也表示它值是10个单位。\(\aleph_0\)是可列集的势,它与\(\nu\)没有直接联系。\(\omega\)是第一个超穷正整数集的初始元,它没有直接前趋。所以数\(\nu=\displaystyle\lim_{n \to \infty}n\)既不是\(\aleph_0\),也不是数\(\omega\)!elim主帖中的【【定理】\(\aleph_0\),\(\omega\)不是任何自然数的后继】,说的倒是一句大实话!但以此证明\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),确实像"因为女浴室中无男人,所以世间根本就没有男人"一样荒诞无稽。elim你不感到你的证明荒唐可笑吗?!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-5-30 11:49 | 显示全部楼层
孬种的贴子除了抱怨我没有教他集论,并无
实质论证或否证,视为搅局。将重发本主题.

回复 支持 反对

使用道具 举报

发表于 2025-5-30 11:50 | 显示全部楼层
在实正整数列1,2,3,……\(\nu\),\(\omega\),\(\omega+1\),\(\omega+2\),……中,康托尔说“数\(\nu\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体“(参见康托尔著《超穷数理论基础》P42页19—20行)所谓把一个个单位放地去意即:数\(\nu\)的基数\(\nu=\overbrace{1+1+……+1}^{\displaystyle\lim_{n \to \infty}n个1}\),数\(\nu\)的序数就是实正整数列1,2,3,……\(\nu\),\(\omega\),\(\omega+1\),\(\omega+2\),……中表示第\(\nu\)号。所以所以数\(\nu\)既是基数也是序数。正整数10既表自然数列1,2,3,4,5,6,7,8,9,10,……它是10号位置的自然数,也表示它值是10个单位。\(\aleph_0\)是可列集的势,它与\(\nu\)没有直接联系。\(\omega\)是第一个超穷正整数集的初始元,它没有直接前趋。所以数\(\nu=\displaystyle\lim_{n \to \infty}n\)既不是\(\aleph_0\),也不是数\(\omega\)!elim主帖中的【【定理】\(\aleph_0\),\(\omega\)不是任何自然数的后继】,说的倒是一句大实话!但以此证明\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),确实像"因为女浴室中无男人,所以世间根本就没有男人"一样荒诞无稽。elim你不感到你的证明荒唐可笑吗?!
回复 支持 反对

使用道具 举报

发表于 2025-5-30 11:52 | 显示全部楼层
在实正整数列1,2,3,……\(\nu\),\(\omega\),\(\omega+1\),\(\omega+2\),……中,康托尔说“数\(\nu\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体“(参见康托尔著《超穷数理论基础》P42页19—20行)所谓把一个个单位放地去意即:数\(\nu\)的基数\(\nu=\overbrace{1+1+……+1}^{\displaystyle\lim_{n \to \infty}n个1}\),数\(\nu\)的序数就是实正整数列1,2,3,……\(\nu\),\(\omega\),\(\omega+1\),\(\omega+2\),……中表示第\(\nu\)号。所以所以数\(\nu\)既是基数也是序数。正整数10既表自然数列1,2,3,4,5,6,7,8,9,10,……它是10号位置的自然数,也表示它值是10个单位。\(\aleph_0\)是可列集的势,它与\(\nu\)没有直接联系。\(\omega\)是第一个超穷正整数集的初始元,它没有直接前趋。所以数\(\nu=\displaystyle\lim_{n \to \infty}n\)既不是\(\aleph_0\),也不是数\(\omega\)!elim主帖中的【【定理】\(\aleph_0\),\(\omega\)不是任何自然数的后继】,说的倒是一句大实话!但以此证明\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),确实像"因为女浴室中无男人,所以世间根本就没有男人"一样荒诞无稽。elim你不感到你的证明荒唐可笑吗?!
回复 支持 反对

使用道具 举报

发表于 2025-5-30 14:18 | 显示全部楼层
冯\(\cdot\)诺依曼自然数构成法\(u+1=u\cup\{u\}\)的“=”两边要么同时是数,要么同时是集合。决无一个“数”等于一个集合之理。并且“=”号数学含义是:”=“的左边是”=“右边的后继。而等式\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}n\)是集合等式。而【对\(n\in\mathbb{N}\)显然亦有\(n=\{0,1,2,…\}\)】的“=”则表示n是集合\(\{0,1,2,…(n-1)\}\)后继,即集合\(\{0,1,2.…,n\}\)是集合\(\{0,1,2,…(n-1)\}\)的后继。虽然集合\(\{0,1,2,…\)\((n-1)\}\)\(\subsetneq\mathbb{N}\),但集合\(sup\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}=\)\(\mathbb{N}=\mathbb{N}\) .所以没有\(n<\mathbb{N}\)之说。当然也就没有\(\mathbb{N}\)\(\subsetneq\)\(\mathbb{N}\)之理!由于单增集列\(A_k=\{0,1,2,…k\}\)的极限集存在,并且\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}n\),所以\(\displaystyle\lim_{n \to \infty}n\)\(\subseteq\mathbb{N}\)\(\land\mathbb{N}\subseteq\displaystyle\lim_{n \to \infty}n\) .所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\) .
回复 支持 反对

使用道具 举报

发表于 2025-5-31 03:23 | 显示全部楼层

       冯\(\cdot\)诺依曼自然数构成法\(u+1=u\cup\{u\}\)的“=”两边要么同时是数,要么同时是集合。决无一个“数”等于一个集合之理。并且“=”号数学含义是:“=”的左边是“=”右边的后继。等式\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}n\)是集合等式。而对\(n\in\mathbb{N}\)显然亦有\(n=\{0,1,2,…\}\)的“=”则表示集合n是集合\(\{0,1,2,…(n-1)\}\)后继,即集合\(\{0,1,2.…,n\}\)是集合\(\{0,1,2,\)\(…(n-1)\}\)的后继。虽然集合\(\{0,1,2,\)\(…(n-1)\}\)\(\subsetneq\mathbb{N}\),但集合\(sup\mathbb{N}=\)\(\displaystyle\lim_{n \to \infty}n=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}=\)\(\mathbb{N}\) .所以没有\(n<\mathbb{N}\)之说(数与集合的关系只有\(\in\)或\(\notin\)两种情形,而无“<”、“>”关系)。当然也就更没有\(\mathbb{N}\)\(\subsetneq\)\(\mathbb{N}\)之理!因为集合\(\displaystyle\lim_{n \to \infty}n=\)\(\mathbb{N}\) ,所以\((\displaystyle\lim_{n \to \infty}n\)\(\subseteq\mathbb{N})\)\(\land(\mathbb{N}\subseteq\displaystyle\lim_{n \to \infty}n)\)(两集合相等的充分必要条件). 所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\) .
回复 支持 反对

使用道具 举报

发表于 2025-7-8 05:31 | 显示全部楼层

       elim孬种,除你以外谁也不会妄图推翻\(\forall n\in\mathbb{N}\)\((n<n+1)\)!你的命题正好说明超穷自然数存在的合理性。因为由皮亚诺公理第二条,\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(否则\(\mathbb{N}=\phi\))的后继\(\displaystyle\lim_{n \to \infty}n\)+1也是自然数!故此超穷自然数存在的合理性得证!
回复 支持 反对

使用道具 举报

发表于 2025-7-8 13:21 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-9 05:17 | 显示全部楼层

命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)
【证明:】
\begin{split}
&\because\quad v=\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\quad(已知) \\
&\therefore\quad (v-1)\notin\mathbb{N}\quad(否则v\in\mathbb{N},Peano axiom第二条)\\
&\therefore\quad (v-2)\notin\mathbb{N}\quad(否则(v-1)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad (v-3)\notin\mathbb{N}\quad(否则(v-2)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad\quad\vdots \\
&\therefore\quad (k+1)\notin\mathbb{N}\quad(否则(k+2)\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad k\notin\mathbb{N}\quad(否则(k+1)\in\mathbb{N},Peano axioms第二条)\\
&\quad\quad\vdots\quad\quad\quad \quad\vdots \\
&\therefore\quad 2\notin\mathbb{N}\quad(否则3\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 1\notin\mathbb{N}\quad(否则2\in\mathbb{N},Peano axioms第二条)\\
&\therefore\quad 0\notin\mathbb{N}\quad(否则1\in\mathbb{N,}Peano axioms第二条)\\
&\therefore\quad \mathbb{N}=\phi\quad(因任意自然数都不属于\mathbb{N})
\end{split}【证毕】
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-14 16:13 , Processed in 0.084261 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表