数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 616|回复: 123

\(\huge\color{navy}{^*\textbf{ 康托-皮亚诺}}否证\color{red}{\textbf{滚驴数学}}\)

[复制链接]
发表于 2025-7-29 03:23 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-8-18 18:48 编辑

皮亚诺自然数理论与康托序数理论的关系概括为:
\(\color{red}{\mathbb{N}}\)是一个序数,由满足皮亚诺公理的序数全体构成

\(\;^{\;}\)
最小无穷大序数\(\alpha\)不是它之前(有限)序数的后继而
非零自然数皆后继序数, 故非后继序数\(\alpha\)非自然数.
显然\(\mathbb{N}\)是第一个非自然数的无穷序数, 故 \(\mathbb{N}=\alpha\)
即自然数皆有限数(皆在最小无穷序数\(\alpha\)之前).

\(\;^{\;}\)
定理 自然数皆有限数纯康托-皮亚诺 证明至此
圆满完成
.
此定理否定了整个滚驴数学.
发表于 2025-7-29 04:42 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-7-29 04:49 编辑


elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:该帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\(\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立序数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)(其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…\)\(j\cdot\omega,…,j\cdot\omega+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        melim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。
回复 支持 反对

使用道具 举报

发表于 2025-7-29 04:51 | 显示全部楼层

elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:该帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\(\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立序数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)(其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…\)\(j\cdot\omega,…,j\cdot\omega+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        melim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。
回复 支持 反对

使用道具 举报

发表于 2025-7-29 05:05 | 显示全部楼层

elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:该帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\(\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立序数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)(其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…\)\(j\cdot\omega,…,j\cdot\omega+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        melim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。
回复 支持 反对

使用道具 举报

发表于 2025-7-29 05:16 | 显示全部楼层

elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:该帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\(\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立序数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)(其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…\)\(j\cdot\omega,…,j\cdot\omega+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        melim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。
回复 支持 反对

使用道具 举报

发表于 2025-7-29 05:26 | 显示全部楼层

elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:该帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\(\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立序数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)(其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…\)\(j\cdot\omega,…,j\cdot\omega+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        melim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。
回复 支持 反对

使用道具 举报

发表于 2025-7-29 05:29 | 显示全部楼层

elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:该帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\(\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立序数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)(其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…\)\(j\cdot\omega,…,j\cdot\omega+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        melim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。
回复 支持 反对

使用道具 举报

发表于 2025-7-29 05:37 | 显示全部楼层

elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:该帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\(\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立序数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)(其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…\)\(j\cdot\omega,…,j\cdot\omega+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        melim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。
回复 支持 反对

使用道具 举报

发表于 2025-7-29 06:21 | 显示全部楼层

elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:该帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\(\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立序数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)(其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…\)\(j\cdot\omega,…,j\cdot\omega+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        melim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。
回复 支持 反对

使用道具 举报

发表于 2025-7-29 07:25 | 显示全部楼层

elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:该帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\(\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立序数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)(其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…\)\(j\cdot\omega,…,j\cdot\omega+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        melim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 19:17 , Processed in 0.114148 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表