数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 667|回复: 26

\(\Huge\color{red}{再論只要极限存在,就一定可达 }\)

[复制链接]
发表于 2025-8-29 03:28 | 显示全部楼层 |阅读模式
本帖最后由 春风晚霞 于 2025-10-10 11:09 编辑


再論只要極限存在,就一定可達

        什麼是極限可達?我們稱函數和自變量同時到達極限的情形叫極限可達(參見徐利治《論無限》P22頁第1行)。为讨论极限的可达性,极限表达式可用颜色把它分成三个重要的组成部分:\(\displaystyle\lim_{\color{red}{n→∞}}\)\(\color{Magenta}{a_n=a}\),其中lim是英语单词limit的缩写,词意为:[n].限制;(地区或地方的)境界,界限,范围;极限;限额;限度;限量;[vt.]. 限制;限定;限量;减量;
【例句】:He was driving at well over the speed limit.
他当时开车的速度远远超过了限制。
[词组]. lower limit;下限;upper limit;
上限:legal limit;法定限度.【数】;根限值。
(参阅《新英汉词典增补本》上海译文出版社P739页、《牛津高阶英汉双解词典》牛津大学出版社P1174页)。
\(\qquad \color{red}{n→∞}\) 表示变量n趋向于无穷;\(\color{Magenta}{a_n=a}\)表示在变量n趋向于无穷时所取得的极限值.
于是我们可得极限可达的符号表达式:
\(\qquad\displaystyle\lim_{\color{red}{n→∞}}\color{Magenta}{a_n=a}\Longleftrightarrow\color{Magenta}{a_n=a}(\color{red}{n→∞})\)\(\qquad\)(*)
       现在我们证明(*)式成立:
       (1)、【证明】(充分性)
       因为\(\displaystyle\lim_{n\to ∞}a_n=a\),所以对任意给定的、无论怎样小的正数ε,当n∈\(\{n|n>N_ε,n∈N\}\)有\(|a_n-a|<\varepsilon\),由\(\varepsilon\)的任意性有\(a_n=a\).即\(\color{red}{当n→∞时a_n=a}\).【充分性证毕】
     (2)、【证明】(必要性)反证法  假设\(\color{red}{当n→∞时a_n≠a}\),即n∈\(\{n|n>N_ε,n∈\)\(N\}\)时\(a_n≠a\),则必有|\(a_n-a\)|=α>0,取\(ε=\frac{α}{2}\),则|\(a_n-a\)|=α>\(\frac{α}{2}\)=ε,这与\(\displaystyle\lim_{n\to ∞}a_n=a\)矛盾(即没有\(当n→∞时a_n=a\)这个条件,一定没有\(\displaystyle\lim_{n\to ∞}a_n=a\)这个结论,亦即无之则必不然)。所以假设不成立。【必要性证畢】
        综合(1)、(2)知(*)式成立
 楼主| 发表于 2025-10-13 22:20 | 显示全部楼层

        根据Weierstrass数列极限的\((\varepsilon—N)\)定义:\(\forall\varepsilon>0,\exists\)\( N(=[\tfrac{1}{\varepsilon}]+1)\)\(\in\mathbb{N}\),当n>N时,恒有\(| a_n-a |<\varepsilon\),\(\iff\)\(\displaystyle\lim_{n \to \infty}a_n=a\)中的限制性短语\(\color{red}{\forall\varepsilon>0,\exists N(=[\tfrac{1}{\varepsilon}]+1)\in\mathbb{N}}\)知\(\mathbb{N}_{\infty}=\)\(\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\}\ne\phi\),且\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-10-15 06:10 | 显示全部楼层

一、皮亚公理
1、0是自然数:自然数集合的起始元素。
2、后继函数存在性:每个自然数a都有唯一后继数a'(即a+1),且a'也是自然数。
3、0非任何数的后继:0不是任何自然数的后继,避免循环(如0→1→0)。
4、后继唯一性:不同自然数的后继不同,即若a'=b',则a=b。
5、归纳公理:若子集S包含0,且当n∈S时n'∈S,则S包含全体自然数(数学归纳法的理论基础)。
二、命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题
1、陶哲轩认为〖每个自照数都是有限数(这个限是每个自然数都小于它的后继),自然数可趋向于无穷,但不等于无穷〗,所以陶哲轩每认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).注意无论是谁的《分析数学》,∞均是指集合\(N_∞=\{n|n>[\tfrac{1}{ε}]+1\}\).所以陶哲轩亦认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
2、现行教科书《实变函数论》认为\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
3、皮亚诺公理第2条支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)(参见陶哲轩自然数集是无限集的证明).
4、根据皮亚诺公理2、3、4条可证明命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是真命题.
elim之所以证明不了命题:若\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),则\(\mathbb{N}=\phi\)是因为你根本就不知道什么是无穷,什么是趋向于无穷?根本就不知道e氏\(\mathbb{N}_∞\)只是你定义出来反现行数学的道具。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-10-16 04:38 | 显示全部楼层

        春风晚霞的目测法是数学中的常用方法:如求数列极限时,我们总是先求数列通项的一般表达式\(a_n=f(n)\),再对\(a_n=f(n)\)两边取极限。又如在求数项级数和的计算中,我们总是先求该数项级数的前n项和\(S_n=f(n)\),再对等式\(S_n=f(n)\)两端取极限得\(s=\displaystyle\lim_{n \to \infty}S_n\); 在求单调集列极限集时,我们也总是先求该集列的通项表达式\(A_n=f(n)\)再根据单调极限集的定义求\(\displaystyle\lim_{n \to \infty}A_n\)\(=\displaystyle\lim_{n \to \infty}f(n)\).由于这种数学中的常规方法算出的结果与elim【骤变】之法算出的结果不一致。所以elim把这各方法贬之为目测法。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-10-16 14:25 | 显示全部楼层

        对任意预先给定的无论怎样大的自然数\(n_e\),\(\mathbb{N}=\)\(\{n\le n_e\}\)\(\cup\{n>n_e\}\)\((n\in\mathbb{N})\). 集合\(\{n\le n_e\}\)中的每个数都是有限数,它们的“限”就是\(n_e\),而集合\(\{n>n_e\}\)中的每个数都是无穷数,无限是相对有限而言的。一百多年法学博士杜林先生就发现了自然数集是由有限自然数所构成的.也就是说任何一个你能写得出、想像得到的自然数都是有限的,这是小学四年级的学生都知道的事。然而恩格斯的“无限纯粹由有限组成的”\(\color{red}{“数学中的无限又是客观存在的.”}\)一百多年前的杜林不知道,一百多年后的民科领袖elim也不知道,这就是怪事了。
回复 支持 1 反对 0

使用道具 举报

 楼主| 发表于 2025-10-19 06:26 | 显示全部楼层
elim你少在这里装弄鬼,村于你所给的单调集列\(\{A_k=\{n|n>k,k\in\mathbb{N}\}\),无论你用\(\underset{n→∞}{\underline{lim}} A_n\)还是用\(\underset{n→∞}{\overline{lim}}A_n\)最终得到的仍然是\(\underset{n→∞}{\underline{lim}}A_n= \)\(\underset{n→∞}{\overline{lim}} A_n=\)\(\displaystyle\lim_{n \to \infty}A_n\),你舍简就繁的目的主要为了在计算过程中渗透你【无穷交就是-种骤变】的荒唐操作。你还是放下你的臭架子,用中学生的交集定义,求交运算的运算规律去证明一下,看\(\displaystyle\lim_{n \to \infty}A_n\)到底等于多少?elim你太藐视天下数学人了。到底谁不识数?你可能永远认识不到,你才是那个不识数又胡搅蛮缠的罪魁祸首!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-10-21 07:07 | 显示全部楼层

       由于elim根本不知道什么是自然数?什么是无穷?什么是趋向无穷?什么是无穷数?什么是超穷数?所以elim总结出来的一切“理论”均不自洽,也不与现行数学兼容。
        一、什么是自然数?
        现行教材对自然数有两种定义:
        定义1(康托尔定义)有限集合的基数称作自然数。
        显然康托尔是认同无穷自然数的,因为在康托尔非负整数集\(\Omega=\)\(\displaystyle\bigcup_{n\in\mathbb{N}}\Omega_j=\)\(\{j\omega,j\omega+1,j\omega+2,……j\omega+\nu\}\),当j=0时,\(\Omega_0=\)\(\{0,1,2,\)\(…,\nu\}\),其中\(\nu=\)\(\displaystyle\lim_{n\to\infty}n\),因此我们有理由认为康托尔是支持\(\displaystyle\lim_{n\to\infty}n\in\mathbb{N}\)的。
        定义2(即皮亚诺公理定义)满足皮亚公理的非负整数叫自然数
        现在我们证明数\(\nu=\displaystyle\lim_{n\to\infty}n\)满足皮亚诺公理:因数\(\nu\ne0\),所以\(\nu\)有直前\(\nu-1\),同理\(\nu-1\)有直前\(\nu-2\),…根据定理〖若\(\displaystyle\lim_{n \to \infty}n\notin\)\(\mathbb{N}\),则\(\mathbb{N}=\phi\).〗所以皮亚诺亦认可\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),同时,我们还可以证明\(\displaystyle\lim_{n \to \infty}(n+j)\in\mathbb{N}\).故此\(\displaystyle\lim_{n \to \infty}n\)满足皮亚诺公理,所以\(\displaystyle\lim_{n \to \infty}n\)是自然数。
        二、什么是无穷,什么是趋向无穷?
        定义1(威尔斯托拉斯定义)对\(\color{red}{\forall\varepsilon>0,\exists N(=[\tfrac{1}{\varepsilon}]+1)\in\mathbb{N}}\)称\(\mathbb{N}_{\infty}=\)\(\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\}为\infty\)
        定义2 当\(n\in\mathbb{N}\)时,称n趋向于\(\infty\),记为\(n\to\infty\).
        根据威尔斯托拉斯关于\(\mathbb{N}_{\infty}\)的定义,\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\).
        三、什么是无穷数,什么是真穷数?
        在现行数学理论中我们称集合\(\mathbb{N}_{\infty}=\)\(\{n|n> N(=[\tfrac{1}{\varepsilon}]+1)\)中的每个数都叫无穷数,而集合\(\Omega_j=\)\(\{j\omega,j\omega+1,j\omega+2,…j\omega+\nu\}\)(\(j\ne 0\))中的每个数都叫超穷数!显然大学者elim的\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),\(\mathbb{N}_{\infty}=\phi\)都不自洽,也不与现行数学兼容。
        我知道我写这些elim是不会看的,不过把这些东西写出来,也算是对盲目参加elim培训的网友的一点友情提示吧!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-10-21 07:08 | 显示全部楼层
elim你的贴子讲论证、讲自洽了吗?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-10-22 05:28 | 显示全部楼层

        elim,〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切计数,又表示它们所汇集成的整体(参见康托《超穷数理论基础》P42页第19-20行)〗这句话可是康托尔说的。另外,威尔斯特拉斯ε—N极限定义中所说的〖对任意预先给定的无论怎样小的正数ε,存在\(N_ε\)(=[\(\tfrac{1}{ε}]+1)\),当\(n>N_ε\)时,恒有\(|a_n-a|<ε\) . 〗这便是菲赫金哥尔茨定义集合\(N_∞=\)\(\{n|n>N_ε,\)\(N_ε\in\mathbb{N}\}\)理论根据。试问你那个“大儿科”的龚升是怎样解读\(n\to\infty\)的?难道他也把\(\mathbb{N}_∞\)解读成空集吗?如果\(\mathbb{N}_∞=\phi\),那么\(\displaystyle\lim_{n \to \infty}a_n=a\)中的\(n\to\infty\)还有什么数学意义?任意学科(分析数学、级数理论、理论力学、分析化学……)的极限运算又当如何进行?你宁可相信【一个人永远走不出一间屋子(芝诺悖论,即\(\tfrac{1}{2^n}\)永远不等0)】也不相信施笃兹定理。老实说对你提出的那个单减集列的极限集,无论是用中学交并运算的定义及运算规律,还是用北大周民强《实变函数论》定义1.8还是1.9,得到的都是\(\underset{n→∞}{\underline{lim}}A_n= \)\(\underset{n→∞}{\overline{lim}}A_n\)\(=\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\)。不管\(\displaystyle\lim_{n \to \infty}n\)是否属于\(\mathbb{N}\)你都得不到\(\mathbb{N}_∞=\phi\),你还好意思为此举办科普讲座,你还好意思以此与我缠斗不休。你不信可把你【无穷交就是一种骤变】的数学创新理论,拿到中学或大学去做一次报告,看看有多少学生或老师认同你的观点?elim,你即使把我闹得身败名裂对你有什么好处?其实,名利对一个九十多岁的人已经不再那么重要.只不过你毫无口德,骂人太惨是可忍而孰不可忍?若待论坛的人觉醒过来,对你的大作进行仔细分析论证,你这个民科领袖的形像还有过去那么光辉吗?再有关于回复你多次,你都不解之疑你还是去看看方嘉琳《集合论》(参见方嘉琳《集合论》P82页3-7行定义2关于自然数的截段理论,和恩格斯悖论(参见恩格斯《反杜林论》2018中文版P53页9-17行;恩格斯《自然辩证法》P4页第一行“数学上的无限是实际存在的”自酌吧!
        此外,你他妈的不是在用康托尔定理证明[0,1]不可数吗?难道康托尔定理(既连续统假设)没有蕴涵\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)?你他妈的自自己去看看陶哲轩关于自然数集是无限集的证明。在那里陶哲轩明确揩出了\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)。你他他的一口一个畜牲不如,依我看你家那些与我同辈的人都他妈的畜牲不如,教出你这种既无学识,又不讲人伦的东西!另外〖有限集的基数叫自然数〗这句话出自余元希等著《初等代数研究》,余元希先生对此不仅有论述,还有相关证明。还有陶哲轩所说的“每个自然数都是有限数”的“限”是指每个自然数都小于它的后继。陶哲轩在什么地方说了\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)?老吾老以及他人之老,幼吾幼以及他人之幼。数学论辩有理说理,无理就滚你妈的蛋!
回复 支持 1 反对 0

使用道具 举报

 楼主| 发表于 2025-10-23 07:40 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-10-24 09:56 编辑


        elim于2025-10-11 01:16发贴称【极限存在并被函数值达到的严格数学表述只能是\(\displaystyle\lim_{x\to \lambda}f(x)=\)\(f(\displaystyle\lim_{x\to\lambda})=\)\(f(\lambda)\) 即函数连续..然而春霞认为不存在\(\displaystyle\lim_{x\to \lambda}f(x)\ne\)\(f(\lambda)\)或\(f在\lambda 无定义\)】
        elim的这段论述,对于连续函数来说,当然是正确的,但elim确忽略了连续函数在区间端点的极限存在,的讨论,连续函数要求在连续区间的左端点右连续,右端点左连续。还有函数数间断点,要求函数在该点无定义:对于函数\(f(x)=\tfrac{1}{x}\),\(f(x)\)在\(\infty\)是有定义的,因为无穷大量的倒数是无穷小量,这就是它的定义。其实春风晚霞〖只要极限存在,就一定可达〗的数学表达式就是\(\displaystyle\lim_{n \to \infty}f(n)\)=\(f(\displaystyle\lim_{n \to \infty}n)\),如\(a_n=f(n)=2^n\)\(\implies\)\(\displaystyle\lim_{n \to \infty}a_n=\)\(2^{\displaystyle\lim_{n \to \infty}n}\)至于e氏【然而春霞认为不存在\(\displaystyle\lim_{x\to \lambda}f(x)\ne\)\(f(\lambda)\)或\(f在\lambda 无定义\)】这是对春风晚霞的栽脏,换句话讲极限存在,但又不可达那也只是e氏数学的事,与现行数学无关,更春风晚霞无关!

回复 支持 1 反对 0

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-11-4 11:07 , Processed in 0.082885 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表