|
|
本帖最后由 王守恩 于 2025-11-8 10:08 编辑
\(\displaystyle\sum_{k=1}^n k^2= \frac{n(n+1)(2n+ 1)}{n}\ \ \ 应该是\ \ \ \sum_{k=1}^n k^2= \frac{n(n+1)(2n + 1)}{6}\)
把估算公式写完整。
\(\displaystyle\sum_{k=1}^n k^a= \frac{n^{a+1}}{1+a}+\frac{n^{a}}{2}+\frac{n^{a-1}}{12/a}-\frac{n^{a-3}}{6!/(a(a-1)(a-2))}+\frac{n^{a-5}}{6*7!/(a(a-1)(a-2)(a-3)(a-4))}-\frac{n^{a-7}}{132*9!/(a(a-1)(a-2)(a-3)(a-4)(a-5)(a-6))}+\cdots\cdots\)
譬如:
算式(1)——Table[(Sum[k^a, {k, n}]/(n^(a + 1)/(1 + a) + n^a/2 + n^(a - 1)/(12/a))), {a, 9, 9}, {n, 999999, 999999}]
{{666664666667000002666666999997999999000000000000/666664666667000002666671666646000023666654666669}}
算式(2)——Table[(Sum[k^a, {k, n}]/(n^(a + 1)/(1 + a) + n^a/2 + n^(a - 1)/(12/a) - n^(a - 3)/(6!/(a (a - 1) (a - 2))))), {a, 9, 9}, {n, 999999, 999999}]
{{666664666667000002666666999997999999000000000000/666664666667000002666666999997999995666673333331}}
算式(3)——Table[(Sum[k^a, {k, n}]/(n^(a + 1)/(1 + a) + n^a/2 + n^(a - 1)/(12/a) - n^(a - 3)/(6!/(a (a - 1) (a - 2))) + n^(a - 5)/(6*7!/(a (a - 1) (a - 2) (a - 3) (a - 4))))), {a, 9, 9}, {n, 999999, 999999}]
{{666664666667000002666666999997999999000000000000/666664666667000002666666999997999999000000000001}} |
|