数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 172|回复: 7

艾木奥1961第一题,对方程组x+y+z=a的评估!【欣赏】

[复制链接]
发表于 2026-1-16 02:44 | 显示全部楼层 |阅读模式
本帖最后由 dodonaomikiki 于 2026-1-16 03:54 编辑

这道题目连着详细解答,
出现在近些年出版的珍宝集/挑战集的奥数训练册里(USA),
我想应该有一定价值!并具有值得欣赏的地方!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
 楼主| 发表于 2026-1-16 02:46 | 显示全部楼层
我对五组数据进行评估!
1,7
7,1
1,17
7,8
8,7
回复 支持 反对

使用道具 举报

 楼主| 发表于 2026-1-16 02:49 | 显示全部楼层
本帖最后由 dodonaomikiki 于 2026-1-16 02:52 编辑

接下来,继续!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2026-1-16 02:51 | 显示全部楼层
本帖最后由 dodonaomikiki 于 2026-1-16 03:18 编辑

\(x1=\frac{  a^2+b^2 }{    4a}+\frac{ \sqrt{ \Delta}    }{2}             \\

y1=\frac{  a^2+b^2 }{    4a}-\frac{ \sqrt{ \Delta}    }{2}         \\





x2=\frac{  a^2+b^2 }{    4a}-\frac{ \sqrt{ \Delta}    }{2}         \\


y2=\frac{  a^2+b^2 }{    4a}   +\frac{ \sqrt{ \Delta}    }{2}         \\

这一组解答在后面就省略掉啦!为啦简洁!        \\


\Delta=\frac{  1 }{ 4a^2 }  \bullet   ( 3a^2-b^2   )(  3 b^2-a^2   )         \\




\)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2026-1-16 03:05 | 显示全部楼层
本帖最后由 dodonaomikiki 于 2026-1-16 03:15 编辑

\(第一组:
x=\frac{ 50}{    4}+\frac{ \sqrt{   (  3-49   )(  3 bullet   49-1)           }    }{2   bullet  2  }        \\

y=///      \\
z=///      \\
由于根号中出现负数,那也就木有必要在计算下去!      \\
就立即Cut算啦吧!      \\
      \\
      \\
      \\







第二组
x=\frac{  50 }{    28}+  \frac{ 1}{14 }  \bullet    \frac{ \sqrt{ 146(-46)}    }{2}        \\
y=///      \\
z=///      \\
由于根号中出现负数,那也就木有必要在计算下去!      \\
就立即Cut算啦吧!      \\
      \\
      \\
      \\







第三组      \\
x1=\frac{  1+17^2 }{    4}+  \frac{ 1}{2 }  \bullet    \frac{ \sqrt{  ( 3- 17^2   )(3   \bullet   17^2   -1 )          }    }{2}        \\
   y=///      \\
z=///      \\
由于根号中出现负数,那也就木有必要在计算下去!      \\
就立即Cut算啦吧!      \\
      \\
      \\
      \\







第四组      \\
x1=\frac{  49+64 }{   28}+  \frac{ 1}{14 }  \bullet    \frac{ \sqrt{  ( 3  \bullet   49- 64   )(3   \bullet   64  -49 )          }    }{2}        \\
      \\
      \\
      \\







第五组      \\
x1=\frac{  49+64 }{   32}+  \frac{ 1}{16 }  \bullet    \frac{ \sqrt{  (3   \bullet   64  -49 )  ( 3  \bullet   49- 64   )        }    }{2}        \\  



  ...\)

回复 支持 反对

使用道具 举报

 楼主| 发表于 2026-1-16 03:22 | 显示全部楼层
我们发现一个规律:
就是说a,b相差不能太远!大小差不多才行方程组才有解答!
接下来考虑第四组第五组!
但是,发现a,b数值互换之后,不影响‘解答结果’!那么,我们就干脆只考虑第四组!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2026-1-16 03:35 | 显示全部楼层
本帖最后由 dodonaomikiki 于 2026-1-16 03:42 编辑

第四组     
  \(  x1=\frac{  49+64 }{   28}+  \frac{ 1}{14 }  \bullet    \frac{ \sqrt{  ( 3  \bullet   49- 64   )(3   \bullet   64  -49 )          }    }{2}        \\
     =( 113+ \sqrt{  (147- 64   )(192  -49 )         } )/28      \\
      = ( 113+ \sqrt{  83     \bullet   143        } )/28                 \\
    \approx  7,9266                     \)


   \(     同样道理    \)
\(   再来计算y1  = ( 113+ \sqrt{  83     \bullet   143      } /28          \)
\(    \approx  0,1448                        \)

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2026-1-16 03:45 | 显示全部楼层
这个结果,
看来不是很友好的数据!Z干脆不想计算啦!“偷奸耍滑”搞一次!



回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2026-2-15 10:20 , Processed in 0.110739 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表