|

楼主 |
发表于 2011-2-27 23:39
|
显示全部楼层
[原创]奇合数定理、奇素数定理证明
MaShi odd sum Numbers theorem: if m ∈ {2ij + m + j | i, j ∈ N +} is {1 + 2m} will watch doesn';t less than 9 of strange sum Numbers.
Proof:
make m = 2ij + I + j (i, j ∈ N +)
Obviously (2ij + i + j) ∈ {2ij + i + j | i, j ∈ N +}
Therefore m∈ {2ij + m I + j | i, j ∈ N +}
So {1 + 2m} ={1 + 2 (2ij + i + j)} = {(2i + 1) (2j + 1)}
Apparently {(2i + 1) (2j + 1)} table not less than 9 of strange sum Numbers
Certificate of tomorrow.
MaShi odd primes theorem: if m ∈ CN +{2ij + i+j| i,j ∈ N +} is {1 + 2m} will watch odd primes
Proof:
if m ∈ CN +{2ij + i+j| i, j, ∈ N +}
By the CN +{2ij + i+j| i,j∈ N +} {2ij + i + j | i,j ∈ N +} = {} and (2ij + i+ j) ∈ {2ij + i + j | i,j ∈ N +} know m ≠(2ij + i + j )indicates
∴{1 + 2m} ={1 + 2 ( 2ij + i+ j)} = {(2i + 1) (2j + 1)} and {(2i + 1) (2j + 1)} table not less than 9 quirrell ∴ {1 + 2m} cannot table not less than 9 of strange sum Numbers so only watch odd primes.
Certificate of tomorrow.
Annotation: {2ij+i+j | i,j ∈ N +} = {4,7,10,12,13,16,17,19,22,... }
CN +{2ij + I + + {| I, j j, ∈ N +} = {1,2,3,5,6,8,9,11,... }
N + = {1,2,3,4,5,6,7,8,9,10,... }
Ask each netizen know .
|
|